cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175521 Nonprimes k such that 9*k divides 2^(k-1) - 1.

Original entry on oeis.org

1, 1105, 1387, 1729, 2047, 2701, 2821, 3277, 4033, 4369, 4681, 5461, 6601, 7957, 8911, 10261, 10585, 11305, 13741, 13747, 13981, 14491, 15709, 15841, 16705, 18721, 19951, 23377, 29341, 30121, 30889, 31417, 31609, 31621, 34945, 39865, 41041, 41665, 42799, 46657, 49141, 49981
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 18 2010

Keywords

Comments

Original name was: Nonprimes n of the form 6m+1 such that (2^(n-1) mod n)=(4^(n-1) mod n)=(8^(n-1) mod n)=..=(k^(n-1) mod n) for k=2,4,8,..,smallest power of 2>n.

Examples

			1 is a term because it is a nonprime and 9*1 = 9 divides 2^(1-1) - 1 = 0.
		

Crossrefs

Subsequence of A001567.

Programs

  • Mathematica
    n = 1; t = {}; While[Length[t] < 100, While[PrimeQ[n] || PowerMod[2, n-1, 9*n] != 1, n = n + 2]; AppendTo[t, n]; n = n + 2]; t (* T. D. Noe, Jul 25 2011 *)
  • PARI
    p=0;forprime(q=2,1e5,for(n=p+1,q-1,if(Mod(2,9*n)^(n-1)==1,print1(n", ")));p=q) \\ Charles R Greathouse IV, Jul 24 2011

Extensions

Name changed by Arkadiusz Wesolowski, Jul 23 2011