A175521 Nonprimes k such that 9*k divides 2^(k-1) - 1.
1, 1105, 1387, 1729, 2047, 2701, 2821, 3277, 4033, 4369, 4681, 5461, 6601, 7957, 8911, 10261, 10585, 11305, 13741, 13747, 13981, 14491, 15709, 15841, 16705, 18721, 19951, 23377, 29341, 30121, 30889, 31417, 31609, 31621, 34945, 39865, 41041, 41665, 42799, 46657, 49141, 49981
Offset: 1
Keywords
Examples
1 is a term because it is a nonprime and 9*1 = 9 divides 2^(1-1) - 1 = 0.
Links
- Vincenzo Librandi and T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
n = 1; t = {}; While[Length[t] < 100, While[PrimeQ[n] || PowerMod[2, n-1, 9*n] != 1, n = n + 2]; AppendTo[t, n]; n = n + 2]; t (* T. D. Noe, Jul 25 2011 *)
-
PARI
p=0;forprime(q=2,1e5,for(n=p+1,q-1,if(Mod(2,9*n)^(n-1)==1,print1(n", ")));p=q) \\ Charles R Greathouse IV, Jul 24 2011
Extensions
Name changed by Arkadiusz Wesolowski, Jul 23 2011
Comments