cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175576 Decimal expansion Pi^(3/2)/Gamma(3/4)^2.

Original entry on oeis.org

3, 7, 0, 8, 1, 4, 9, 3, 5, 4, 6, 0, 2, 7, 4, 3, 8, 3, 6, 8, 6, 7, 7, 0, 0, 6, 9, 4, 3, 9, 0, 5, 2, 0, 0, 9, 2, 4, 3, 5, 1, 9, 7, 6, 4, 7, 0, 4, 3, 5, 3, 3, 8, 1, 1, 1, 7, 1, 8, 5, 6, 0, 9, 0, 1, 1, 2, 0, 4, 3, 5, 5, 3, 6, 7, 6, 2, 3, 9, 9, 5, 6, 7, 1, 4, 5, 4, 3, 7, 2, 3, 3, 0, 0, 7, 4, 3, 7, 9, 4, 5, 5, 5, 5, 4
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 e of chapter 11 of Ramanujan's second notebook.
In addition, Pi^(3/2) / Gamma(3/4)^2 is the area of the unit "squircle" as defined in MathWorld. (Note that 8*Gamma(5/4)^2 / sqrt(Pi) is the same constant.) - Jean-François Alcover, Feb 24 2011
Real period of the elliptic curve y^2 = x*(x - 1)*(x - 1/2). See Rouse. - Peter Bala, Dec 06 2024

Examples

			3.708149354602743836867700694390520092435197647...
		

Crossrefs

Programs

  • Maple
    Pi^(3/2)/GAMMA(3/4)^2 ; evalf(%) ;
  • Mathematica
    RealDigits[Pi*EllipticTheta[3, 0, Exp[-Pi]]^2, 10, 50][[1]]
    RealDigits[Pi^(3/2)/(Gamma[3/4])^2, 10, 50][[1]] (* G. C. Greubel, Feb 12 2017 *)
  • PARI
    Pi^1.5/gamma(3/4)^2 \\ Charles R Greathouse IV, Jun 06 2016

Formula

Equals A175476 / A068465^2 = 1/A175575.
Equals Integral_{-oo, oo} 1/(1+2*x^2)^(3/4) or Integral_{-oo, oo} 1/sqrt(1+x^4). - Jean-François Alcover, Jun 04 2013
Equals sqrt(2)*L, where L is the lemniscate constant A062539. - Jean-François Alcover, Aug 11 2014
From Peter Bala, Mar 01 2022 : (Start)
Equals 3*Sum_{n >= 0} (1/(4*n+1) + 1/(4*n-3))*binomial(1/2,n). Cf. A290570.
Equals hypergeom([-1/2, 3/4, -3/4], [-1/4, 5/4], -1).
Equals 2*hypergeom([1/4, 3/4], [5/4], 1) = (16/5)*hypergeom([-1/4, -3/4], [5/4], 1). (End)
Equals 2 * A093341. - R. J. Mathar, Dec 08 2023
From Peter Bala, Dec 06 2024: (Start)
Equals Pi*hypergeom([1/2, 1/2], [1], 1/2).
Equals 2*Integral_{x = 0..Pi/2} 1/sqrt(1 - (1/2)*sin^2(x)) dx. See Rouse. (End)