cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175579 Triangle T(n,d) read by rows: Number of ascent sequences of length n with d zeros.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 21, 12, 4, 1, 53, 84, 54, 20, 5, 1, 217, 380, 270, 110, 30, 6, 1, 1014, 1926, 1490, 660, 195, 42, 7, 1, 5335, 10840, 9020, 4300, 1365, 315, 56, 8, 1, 31240, 67195, 59550, 30290, 10255, 2520, 476, 72, 9, 1, 201608, 455379, 426405
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

The first column and the row sums are both A022493.
Also the number of length-n ascent sequences with k fixed points. [Joerg Arndt, Nov 03 2012]

Examples

			The triangle starts:
01:       1;
02:       1,      1;
03:       2,      2,      1;
04:       5,      6,      3,      1;
05:      15,     21,     12,      4,     1;
06:      53,     84,     54,     20,     5,     1;
07:     217,    380,    270,    110,    30,     6,    1;
08:    1014,   1926,   1490,    660,   195,    42,    7,   1;
09:    5335,  10840,   9020,   4300,  1365,   315,   56,   8,  1;
10:   31240,  67195,  59550,  30290, 10255,  2520,  476,  72,  9,  1;
11:  201608, 455379, 426405, 229740, 82425, 21448, 4284, 684, 90, 10, 1;
...
From _Joerg Arndt_, Mar 05 2014: (Start)
The 15 ascent sequences of length 4 (dots for zeros) together with their numbers of zeros and numbers of fixed points are:
01:    [ . . . . ]   4   1
02:    [ . . . 1 ]   3   1
03:    [ . . 1 . ]   3   1
04:    [ . . 1 1 ]   2   1
05:    [ . . 1 2 ]   2   1
06:    [ . 1 . . ]   3   2
07:    [ . 1 . 1 ]   2   2
08:    [ . 1 . 2 ]   2   2
09:    [ . 1 1 . ]   2   2
10:    [ . 1 1 1 ]   1   2
11:    [ . 1 1 2 ]   1   2
12:    [ . 1 2 . ]   2   3
13:    [ . 1 2 1 ]   1   3
14:    [ . 1 2 2 ]   1   3
15:    [ . 1 2 3 ]   1   4
Both statistics give row 4: [5, 6, 3, 1].
(End)
		

Crossrefs

Cf. A022493 (number of ascent sequences), A137251 (ascent sequences with k ascents), A218577 (ascent sequences with maximal element k).
Cf. A218579 (ascent sequences with last zero at position k-1), A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
T(2n,n) gives A357309.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
          `if`(j=0, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, -1$2)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Mar 11 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == 0, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, -1, -1]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
  • PARI
    {T(n,d)=polcoeff(polcoeff(sum(m=0,n+1,prod(j=0,m-1,(1-(1-x)^j*(1-x*y) +x^2*y^2*O(x^n*y^d)))),n+1,x),d+1,y)} /* Paul D. Hanna, Feb 18 2012 */
    for(n=0,10,for(d=0,n,print1(T(n,d),", "));print(""))
    
  • PARI
    {T(n,d)=polcoeff(polcoeff(sum(m=1,n+1,x*y/(1-x*y +x*y*O(x^n*y^d))^m*prod(j=1,m-1,(1-(1-x)^j))),n+1,x),d+1,y)} /* Paul D. Hanna, Feb 18 2012 */
    for(n=0,10,for(d=0,n,print1(T(n,d),", "));print(""))

Formula

The bivariate g.f. A(x,y) = Sum_{n>=1, d=1..n} T(n,d)*x^(n+1)*y^(d+1) can be given in two forms (see Remmel and Kitaev, or Levande link):
(1) A(x,y) = Sum_{n>=1} Product_{k=0..n-1} (1 - (1-x)^k*(1-x*y)),
(2) A(x,y) = Sum_{n>=1} x*y/(1-x*y)^n * Product_{k=1..n-1} (1 - (1-x)^k).

Extensions

Corrected offset, Joerg Arndt, Nov 03 2012