cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175661 Eight bishops and one elephant on a 3 X 3 chessboard: a(n) = 2^(n+2)-3*F(n+1), with F(n) = A000045(n).

Original entry on oeis.org

1, 5, 10, 23, 49, 104, 217, 449, 922, 1883, 3829, 7760, 15685, 31637, 63706, 128111, 257353, 516536, 1036033, 2076857, 4161466, 8335475, 16691245, 33415328, 66883789, 133853549, 267846202, 535917479, 1072199137, 2144987528
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010, Aug 10 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to four A[5] vectors with decimal values 171, 174, 234 and 426. These vectors lead for the side squares to A000079 and for the corner squares to A175660 (a(n)=2^(n+2)-3*F(n+2)).

Crossrefs

Cf. A175655 (central square), A000045.
Cf. A027973 (2^(n+2)+F(n)-F(n+4)), A099036 (2^n-F(n)), A167821 (2^(n+1)-2*F(n+2)), A175657 (3*2^n-2*F(n+1)), A175660 (2^(n+2)-3*F(n+2)), A179610 (convolution of (-4)^n and F(n+1)).

Programs

  • Magma
    I:=[1,5,10]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
  • Maple
    nmax:=29; m:=5; A[5]:= [0,1,0,1,0,1,0,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1 + 2 x - 4 x^2) / (1 - 3 x + x^2 + 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
    LinearRecurrence[{3,-1,-2},{1,5,10},30] (* Harvey P. Dale, Apr 15 2019 *)

Formula

G.f.: (1 + 2*x - 4*x^2)/(1 - 3*x + x^2 + 2*x^3).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) with a(0)=1, a(1)=5 and a(2)=10.