cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A328490 Dirichlet g.f.: zeta(s)^2 * zeta(s-2)^2.

Original entry on oeis.org

1, 10, 20, 67, 52, 200, 100, 380, 282, 520, 244, 1340, 340, 1000, 1040, 1973, 580, 2820, 724, 3484, 2000, 2440, 1060, 7600, 1978, 3400, 3460, 6700, 1684, 10400, 1924, 9710, 4880, 5800, 5200, 18894, 2740, 7240, 6800, 19760, 3364, 20000, 3700, 16348, 14664
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Dirichlet convolution of A001157 with itself.
Dirichlet convolution of A000005 with A034714.
Dirichlet convolution of A000290 with A007433.

Crossrefs

Programs

  • Magma
    [&+[DivisorSigma(2,d)*DivisorSigma(2, n div d):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Oct 16 2019
    
  • Mathematica
    Table[DivisorSum[n, DivisorSigma[2, #] DivisorSigma[2, n/#] &], {n, 1, 45}]
    f[p_, e_] :=((e*(p^2-1)+p^2-3)*p^(2*e+4) + e*(p^2-1) + 3*p^2 - 1)/(p^2-1)^3 ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X)^2 / (1 - p^2*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Sep 26 2020

Formula

a(n) = Sum_{d|n} sigma_2(d) * sigma_2(n/d), where sigma_2 = A001157.
a(n) = Sum_{d|n} d^2 * tau(d) * tau(n/d), where tau = A000005.
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 * (zeta(3)*(log(n)/3 + 2*gamma/3 - 1/9) + 2*zeta'(3)/3), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(p^e) = ((e*(p^2-1)+p^2-3)*p^(2*e+4) + e*(p^2-1) + 3*p^2 - 1)/(p^2-1)^3. - Amiram Eldar, Sep 15 2023
Showing 1-1 of 1 results.