cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175724 Partial sums of floor(n^2/12).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 10, 15, 21, 29, 39, 51, 65, 81, 99, 120, 144, 171, 201, 234, 270, 310, 354, 402, 454, 510, 570, 635, 705, 780, 860, 945, 1035, 1131, 1233, 1341, 1455, 1575, 1701, 1834, 1974, 2121, 2275, 2436, 2604, 2780, 2964, 3156, 3356
Offset: 0

Views

Author

Mircea Merca, Aug 18 2010

Keywords

Comments

Partial sums of A008724.
Maximum Wiener index of all maximal 6-degenerate graphs with n-2 vertices. (A maximal 6-degenerate graph can be constructed from a 6-clique by iteratively adding a new 6-leaf (vertex of degree 6) adjacent to 6 existing vertices.) The extremal graphs are 6th powers of paths, so the bound also applies to 6-trees. - Allan Bickle, Sep 18 2022

Crossrefs

Cf. A008724.
Maximum Wiener index of all maximal k-degenerate graphs for k=1..6: A000292, A002623, A014125, A122046, A122047, (this sequence).

Programs

  • Magma
    [ &+[ Floor(j^2/12): j in [0..n] ]: n in [0..60] ];
    
  • Maple
    A175724 := proc(n) add( floor(i^2/12) ,i=0..n) ; end proc:
  • Mathematica
    Accumulate[Floor[Range[0, 49]^2/12]]
  • PARI
    vector(61, n, round((2*(n-1)^3 +3*(n-1)^2 -18*(n-1))/72) ) \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    [round((2*n^3 +3*n^2 -18*n)/72) for n in (0..60)] # G. C. Greubel, Dec 05 2019

Formula

a(n) = round((2*n^3 + 3*n^2 - 18*n)/72).
a(n) = a(n-6) + (n-2)*(n-3)/2, n>5.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-6) -3*a(n-7) +3*a(n-8) -a(n-9), n>8.
G.f.: x^4/((x+1)*(x^2+x+1)*(x^2-x+1)*(x-1)^4).
An explicit formula appears in the Bickle/Che paper.