cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175729 Numbers n such that the sum of the prime factors with multiplicity of n divides n-1.

Original entry on oeis.org

6, 21, 45, 52, 225, 301, 344, 441, 697, 1225, 1333, 1540, 1625, 1680, 1695, 1909, 2025, 2041, 2145, 2295, 2466, 2601, 2926, 3051, 3104, 3146, 3400, 3510, 3738, 3888, 3901, 4030, 4186, 4251, 4375, 4641, 4675, 4693, 4930, 5005, 5085, 5244, 5425, 6025, 6105
Offset: 1

Views

Author

K. T. Lee (7x3(AT)21cn.com), Aug 23 2010

Keywords

Examples

			For example, 21=7x3, 7+3=10 which divides 21-1=20.
		

Crossrefs

Disjoint from A130871 and A046346.
Cf. A001414.
Contains A164643.

Programs

  • Magma
    [k:k in [2..6200]| IsIntegral((k-1)/( &+[m[1]*m[2]: m in Factorization(k)]))]; // Marius A. Burtea, Sep 16 2019
    
  • Maple
    A001414 := proc(n) ifactors(n)[2] ; add( op(1,p)*op(2,p),p=%) ; end proc:
    isA175729 := proc(n) if (n-1) mod A001414(n) = 0 then true; else false; end if; end proc:
    for n from 2 to 10000 do if isA175729(n) then printf("%d,",n) ; end if; end do:
    # R. J. Mathar, Aug 24 2010
  • Mathematica
    fQ[n_] := Mod[n - 1, Plus @@ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger@ n]] == 0; Select[ Range@ 6174, fQ] (* Robert G. Wilson v, Aug 25 2010 *)
  • Python
    from sympy import factorint
    def ok(n): return n>1 and (n-1)%sum(p*e for p, e in factorint(n).items())==0
    print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Sep 30 2022

Formula

{n : A001414(n) | (n-1)}. [R. J. Mathar, Aug 24 2010]

Extensions

Extended by R. J. Mathar and Robert G. Wilson v, Aug 24 2010