cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175757 Triangular array read by rows: T(n,k) is the number of blocks of size k in all set partitions of {1,2,...,n}.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 20, 12, 4, 1, 75, 50, 20, 5, 1, 312, 225, 100, 30, 6, 1, 1421, 1092, 525, 175, 42, 7, 1, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1

Views

Author

Geoffrey Critzer, Dec 04 2010

Keywords

Comments

The row sums of this triangle equal A005493. Equals A056857 without its leftmost column.
T(n,k) = binomial(n,k)*B(n-k) where B is the Bell number.

Examples

			The set {1,2,3} has 5 partitions, {{1, 2, 3}}, {{2, 3}, {1}}, {{1, 3}, {2}}, {{1, 2}, {3}}, and {{2}, {3}, {1}}, and there are a total of 3 blocks of size 2, so T(3,2)=3.
Triangle begins:
    1;
    2,   1;
    6,   3,   1;
   20,  12,   4,  1;
   75,  50,  20,  5, 1;
  312, 225, 100, 30, 6, 1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0],
          add((p-> p+[0, p[1]*x^j])(b(n-j)*
          binomial(n-1, j-1)), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)[2]):
    seq(T(n), n=1..12);  # Alois P. Heinz, Apr 24 2017
  • Mathematica
    Table[Table[Length[Select[Level[SetPartitions[m],{2}],Length[#]==n&]],{n,1,m}],{m,1,10}]//Grid

Formula

E.g.f. for column k is x^k/k!*exp(exp(x)-1).
Sum_{k=1..n} k * T(n,k) = A070071(n). - Alois P. Heinz, Mar 03 2020