cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A171013 In the sequence of prime numbers, replace all digits '1' with '0' and vice versa.

Original entry on oeis.org

2, 3, 5, 7, 0, 3, 7, 9, 23, 29, 30, 37, 40, 43, 47, 53, 59, 60, 67, 70, 73, 79, 83, 89, 97, 10, 13, 17, 19, 3, 27, 30, 37, 39, 49, 50, 57, 63, 67, 73, 79, 80, 90, 93, 97, 99, 200, 223, 227, 229, 233, 239, 240, 250, 257, 263, 269, 270, 277, 280, 283, 293, 317
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FromDigits[IntegerDigits[#]/.{1->p,0->q}/.{p->0,q->1}]&/@Prime[Range[100]] (* Vincenzo Librandi, Jul 06 2012 *)
  • PARI
    a(n)=my(v=[1,0,2,3,4,5,6,7,8,9]);apply(k->v[k+1],digits(prime(n))) \\ Charles R Greathouse IV, Jul 16 2013

Formula

a(n) = A222210(A000040(n)). - M. F. Hasler, Feb 13 2013

A222254 In the number n, replace all (decimal) digits '8' with '9' and vice versa.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 18, 20, 21, 22, 23, 24, 25, 26, 27, 29, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 68, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

M. F. Hasler, Feb 13 2013

Keywords

Comments

The map which is applied to primes in A171057.

Crossrefs

Programs

  • Mathematica
    a[n_]:= IntegerDigits[n]/.{8->9, 9->8}//FromDigits; Table[a[n], {n, 0, 80}] (* Vincenzo Librandi, Jul 29 2013 *)
  • PARI
    A222254(n,d=[0, 1, 2, 3, 4, 5, 6, 7, 9, 8])=sum(i=1,#n=digits(n),d[n[i]+1]*10^(#n-i),!n*d[1]) \\ N.B.: digits(0)=[] in PARI (v.2.6)

A196092 Positive integers b for which there is a primitive (5/3)-Pythagorean triple (a,b,c) satisfying a<=b.

Original entry on oeis.org

39, 17, 144, 56, 45, 315, 24, 552, 200, 45, 305, 72, 57, 333, 105, 581, 144, 752, 189, 63, 240, 80, 297, 360, 335, 91, 112, 504, 192, 369, 585, 160, 672, 623, 248, 765, 135, 247, 387, 280, 365, 231, 352, 216, 391, 648, 475, 351, 520, 665, 395, 667, 423
Offset: 1

Views

Author

Clark Kimberling, Sep 27 2011

Keywords

Comments

See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.

Crossrefs

Programs

A035043 Replace any decimal digit '1' with '2' and vice versa.

Original entry on oeis.org

0, 2, 1, 3, 4, 5, 6, 7, 8, 9, 20, 22, 21, 23, 24, 25, 26, 27, 28, 29, 10, 12, 11, 13, 14, 15, 16, 17, 18, 19, 30, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 41, 43, 44, 45, 46, 47, 48, 49, 50, 52, 51, 53, 54, 55, 56, 57, 58, 59, 60, 62, 61, 63, 64, 65, 66, 67, 68
Offset: 0

Views

Author

Keywords

Comments

The map which is applied to primes in A171015. - M. F. Hasler, Feb 12 2013

Crossrefs

Programs

  • Mathematica
    a[n_]:= IntegerDigits[n]/.{1->2, 2->1} // FromDigits; Table[a[n], {n, 0, 80}] (* Vincenzo Librandi, Jul 29 2013 *)
  • PARI
    A035043(n, d=[0, 2, 1, 3, 4, 5, 6, 7, 8, 9])=sum(i=1, #n=digits(n), d[n[i]+1]*10^(#n-i)) \\ gives correct value for n=0 iff d[1]=0, since digits(0)=[] in PARI (v.2.6) M. F. Hasler, Feb 12 2013

Extensions

Definition rephrased by M. F. Hasler, Oct 26 2013

A222235 In the number n, replace all (decimal) digits '3' with '5' and vice versa.

Original entry on oeis.org

0, 1, 2, 5, 4, 3, 6, 7, 8, 9, 10, 11, 12, 15, 14, 13, 16, 17, 18, 19, 20, 21, 22, 25, 24, 23, 26, 27, 28, 29, 50, 51, 52, 55, 54, 53, 56, 57, 58, 59, 40, 41, 42, 45, 44, 43, 46, 47, 48, 49, 30, 31, 32, 35, 34, 33, 36, 37, 38, 39, 60, 61, 62, 65, 64, 63, 66, 67, 68, 69, 70, 71, 72, 75, 74, 73
Offset: 0

Views

Author

M. F. Hasler, Feb 12 2013

Keywords

Comments

The map which is applied to primes in A171026.

Crossrefs

Programs

  • Mathematica
    a[n_]:= IntegerDigits[n]/.{3->5, 5->3} // FromDigits; Table[a[n], {n, 0, 80}] (* Vincenzo Librandi, Jul 30 2013 *)
  • PARI
    A222235(n,d=[0,1,2,5,4,3,6,7,8,9])={sum(i=1,#n=digits(n),d[n[i]+1]*10^(#n-i),!n*d[1])} \\ N.B.: digits(0)=[] in PARI (v.2.6)

A222251 In the number n, replace all (decimal) digits '6' with '9' and vice versa.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 9, 7, 8, 6, 10, 11, 12, 13, 14, 15, 19, 17, 18, 16, 20, 21, 22, 23, 24, 25, 29, 27, 28, 26, 30, 31, 32, 33, 34, 35, 39, 37, 38, 36, 40, 41, 42, 43, 44, 45, 49, 47, 48, 46, 50, 51, 52, 53, 54, 55, 59, 57, 58, 56, 90, 91, 92, 93, 94, 95, 99, 97, 98, 96, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

M. F. Hasler, Feb 13 2013

Keywords

Comments

The map which is applied to primes in A171055.

Crossrefs

Programs

  • Mathematica
    a[n_]:= IntegerDigits[n]/.{6->9, 9->6} // FromDigits; Table[a[n], {n, 0, 80}] (* Vincenzo Librandi, Jul 31 2013 *)
  • PARI
    A222251(n,d=[0, 1, 2, 3, 4, 5, 9, 7, 8, 6])=sum(i=1,#n=digits(n),d[n[i]+1]*10^(#n-i),!n*d[1]) \\ N.B.: digits(0)=[] in PARI (v.2.6)
    
  • Python
    def flp69(s): return s.replace("6", "-").replace("9", "6").replace("-", "9")
    def aupto(lim): return [int(flp69(s)) for s in map(str, range(lim+1))]
    print(aupto(75)) # Michael S. Branicky, Sep 07 2021

A035044 Exchange 2 and 3.

Original entry on oeis.org

0, 1, 3, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 12, 14, 15, 16, 17, 18, 19, 30, 31, 33, 32, 34, 35, 36, 37, 38, 39, 20, 21, 23, 22, 24, 25, 26, 27, 28, 29, 40, 41, 43, 42, 44, 45, 46, 47, 48, 49, 50, 51, 53, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 62, 64, 65, 66, 67, 68
Offset: 0

Views

Author

Keywords

Comments

The map which is applied to primes in A171018. - M. F. Hasler, Feb 12 2013
Rearrangement of A001477 (the nonnegative integers). - Zak Seidov, Feb 15 2013

Crossrefs

Programs

  • Mathematica
    FromDigits[IntegerDigits[#]/.{2->3,3->2}]&/@Range[0,68] (* Zak Seidov, Feb 15 2013 *)
  • PARI
    A222227(n, d=[0, 1, 3, 2, 4, 5, 6, 7, 8, 9])=sum(i=1, #n=digits(n), d[n[i]+1]*10^(#n-i)) \\ gives correct value for n=0 iff d[1]=0, since digits(0)=[] in PARI (v.2.6), M. F. Hasler, Feb 12 2013

A180526 Primes that become a different prime under the mapping 1 <=> 3.

Original entry on oeis.org

13, 17, 31, 37, 41, 43, 71, 73, 107, 113, 131, 137, 149, 151, 167, 179, 181, 197, 211, 233, 281, 283, 307, 313, 317, 331, 349, 353, 367, 379, 383, 397, 419, 439, 461, 463, 521, 523, 613, 631, 641, 643, 719, 739, 821, 823, 881, 883, 1021, 1033, 1039, 1049
Offset: 1

Views

Author

Zak Seidov and Robert G. Wilson v, Sep 09 2010

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{id = IntegerDigits@n}, (MemberQ[id, 1] || MemberQ[id, 3]) && PrimeQ[ FromDigits[ id /. {1 -> 3, 3 -> 1}] ]]; Select[ Prime@ Range@ 300, fQ]

A222211 In the number n, replace all (decimal) digits '0' with '2' and vice versa.

Original entry on oeis.org

2, 1, 0, 3, 4, 5, 6, 7, 8, 9, 12, 11, 10, 13, 14, 15, 16, 17, 18, 19, 2, 1, 0, 3, 4, 5, 6, 7, 8, 9, 32, 31, 30, 33, 34, 35, 36, 37, 38, 39, 42, 41, 40, 43, 44, 45, 46, 47, 48, 49, 52, 51, 50, 53, 54, 55, 56, 57, 58, 59, 62, 61, 60, 63, 64, 65, 66, 67, 68, 69, 72, 71, 70, 73, 74, 75
Offset: 0

Views

Author

M. F. Hasler, Feb 12 2013

Keywords

Comments

The map which is applied to primes in A171014.
Programs should omit leading '0' digits in the resulting terms. - Georg Fischer, Apr 06 2019

Crossrefs

Cf. A222210-A222254 (other digit pairs), A171013-A171057, A175770 (in prime numbers).

Programs

  • Mathematica
    a[n_]:= IntegerDigits[n]/.{0->2, 2->0} // FromDigits; Table[a[n], {n, 0, 80}] (* Vincenzo Librandi, Jul 29 2013 *)
  • PARI
    A222211(n,d=[2,1,0,3,4,5,6,7,8,9])={sum(i=1,#n=digits(n),d[n[i]+1]*10^(#n-i),!n*d[1])} \\ N.B.: digits(0)=[] in PARI (v.2.6)
    
  • Perl
    print join(",", map{tr/02/20/; $+0}(0..75)); # _Georg Fischer, Apr 06 2019

A222212 In the number n, replace all (decimal) digits '0' with '3' and vice versa.

Original entry on oeis.org

3, 1, 2, 0, 4, 5, 6, 7, 8, 9, 13, 11, 12, 10, 14, 15, 16, 17, 18, 19, 23, 21, 22, 20, 24, 25, 26, 27, 28, 29, 3, 1, 2, 0, 4, 5, 6, 7, 8, 9, 43, 41, 42, 40, 44, 45, 46, 47, 48, 49, 53, 51, 52, 50, 54, 55, 56, 57, 58, 59, 63, 61, 62, 60, 64, 65, 66, 67, 68, 69, 73, 71, 72, 70, 74, 75
Offset: 0

Views

Author

M. F. Hasler, Feb 12 2013

Keywords

Comments

The map which is applied to primes in A171016.

Crossrefs

Programs

  • Mathematica
    a[n_]:= IntegerDigits[n]/.{0->3, 3->0} // FromDigits; Table[a[n], {n, 0, 80}] (* Vincenzo Librandi, Jul 29 2013 *)
  • PARI
    A222212(n,d=[3,1,2,0,4,5,6,7,8,9])=sum(i=1,#n=digits(n),d[n[i]+1]*10^(#n-i))+!n*d[1] \\ N.B.: PARI's digits() function returns [] for 0.
    
  • PARI
    a(n)=if(n, fromdigits(apply(d->if(d>3,d,[3,1,2,0][d+1]), digits(n))), 3) \\ Charles R Greathouse IV, Sep 27 2015
Showing 1-10 of 46 results. Next