A175800 Number of real zeros of the polynomial whose coefficients are the decimal digits of Fibonacci(n).
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 1, 1, 0, 2, 2, 0, 0, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 1, 3, 1, 1, 2, 2, 0, 0, 2, 1, 1, 3, 1, 1, 4, 2, 2, 2, 1, 1, 3, 1, 1, 0, 2, 0, 2, 2, 3, 1, 1, 1, 1, 2, 2, 0, 2, 2, 1, 1, 1, 1, 2, 2, 4, 0, 0, 1, 1, 1
Offset: 1
Examples
a(41) = 4 because Fibonacci(41) = 165580141 and the polynomial 1 + 4*x + x^2 + 8*x^4 + 5*x^5 + 5*x^6 + 6*x^7 + x^8 has 4 real roots, x0 = -5.160582776..., x2 = -1.173079878..., x3 = -0.7235395314..., and x4 = -0.2802116772...
Programs
-
Maple
A175800 := proc(n) d := convert(combinat[fibonacci](n),base,10) ; P := add( op(i,d)*x^(i-1),i=1..nops(d)) ; [fsolve(P,x,real)] ; nops(%) ; end proc: seq(A175800(n),n=1..45) ; # R. J. Mathar, Dec 06 2010
Comments