A175811 A007318-deficient numbers.
1, 7, 11, 13, 17, 18, 19, 23, 24, 25, 29, 30, 31, 32, 33, 37, 38, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 60, 61, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A007318 := proc(n) option remember; local t, r; t := 0 ; for r from 0 do if t+r+1 > n then return binomial(r, n-t) ; end if; t := t+r+1 ; end do: end proc: isA175811 := proc(n) m := 0 ; for d in numtheory[divisors](n) minus {n} do m := m+A007318(d) ; end do; m < A007318(n) ; end proc: for n from 1 to 120 do if isA175811(n) then printf("%d,", n); end if; end do: # R. J. Mathar, Dec 06 2010
-
PARI
b(n) = {my(m = 1); while (m*(m+1)/2 < n, m++); if (! ispolygonal(n, 3), m--); binomial(m, n - m*(m+1)/2);} isok(n) = sumdiv(n, d, (d
Michel Marcus, Feb 07 2016
Formula
{n: sum_{d|n, dA007318(d) < A007318(n)}.
Extensions
Terms >25 from R. J. Mathar, Dec 06 2010
Comments