cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175811 A007318-deficient numbers.

Original entry on oeis.org

1, 7, 11, 13, 17, 18, 19, 23, 24, 25, 29, 30, 31, 32, 33, 37, 38, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 60, 61, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117
Offset: 1

Views

Author

Vladimir Shevelev, Dec 05 2010

Keywords

Comments

Definition see in comment to A175522. The same criticism on index-selection as in A175807 applies. All primes greater than 5 are in the sequence.

Crossrefs

Cf. A007318, A175522, A175807 (perfect version), A005100, A005101.

Programs

  • Maple
    A007318 := proc(n) option remember; local t, r; t := 0 ; for r from 0 do if t+r+1 > n then return binomial(r, n-t) ; end if; t := t+r+1 ; end do: end proc:
    isA175811 := proc(n) m := 0 ; for d in numtheory[divisors](n) minus {n} do m := m+A007318(d) ; end do; m < A007318(n) ; end proc:
    for n from 1 to 120 do if isA175811(n) then printf("%d,", n); end if; end do: # R. J. Mathar, Dec 06 2010
  • PARI
    b(n) = {my(m = 1); while (m*(m+1)/2 < n, m++); if (! ispolygonal(n, 3), m--); binomial(m, n - m*(m+1)/2);}
    isok(n) = sumdiv(n, d, (dMichel Marcus, Feb 07 2016

Formula

{n: sum_{d|n, dA007318(d) < A007318(n)}.

Extensions

Terms >25 from R. J. Mathar, Dec 06 2010