cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175826 Partial sums of ceiling(n^2/8).

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 15, 22, 30, 41, 54, 70, 88, 110, 135, 164, 196, 233, 274, 320, 370, 426, 487, 554, 626, 705, 790, 882, 980, 1086, 1199, 1320, 1448, 1585, 1730, 1884, 2046, 2218, 2399, 2590, 2790, 3001, 3222, 3454, 3696, 3950, 4215, 4492, 4780, 5081, 5394
Offset: 0

Views

Author

Mircea Merca, Dec 05 2010

Keywords

Comments

Partial sums of A036406.

Examples

			a(8) = 0 + 1 + 1 + 2 + 2 + 4 + 5 + 7 + 8 = 30.
		

Crossrefs

Cf. A175822.

Programs

  • Magma
    [&+[Ceiling(k^2/8): k in [0..n]]: n in [0..50]];  // Bruno Berselli, Apr 26 2011
    
  • Maple
    seq(floor((n+1)*(2*n^2+n+27)/48),n=0..50)
  • PARI
    a(n)=(n+1)*(2*n^2+n+27)\48 \\ Charles R Greathouse IV, Oct 19 2022

Formula

a(n) = round((2*n+1)*(2*n^2 + 2*n + 27)/96).
a(n) = floor((n+1)*(2*n^2 + n + 27)/48).
a(n) = ceiling((2*n^3 + 3*n^2 + 28*n)/48).
a(n) = a(n-8) + (n+1)*(n-8) + 30.
From R. J. Mathar, Dec 06 2010: (Start)
G.f.: x*(1 - x + x^2 + x^4 - x^3) / ( (1+x)*(1+x^2)*(x-1)^4 ).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7). (End)