A175827 Partial sums of ceiling(n^2/10).
0, 1, 2, 3, 5, 8, 12, 17, 24, 33, 43, 56, 71, 88, 108, 131, 157, 186, 219, 256, 296, 341, 390, 443, 501, 564, 632, 705, 784, 869, 959, 1056, 1159, 1268, 1384, 1507, 1637, 1774, 1919, 2072, 2232, 2401, 2578, 2763, 2957, 3160, 3372, 3593, 3824, 4065, 4315
Offset: 0
Keywords
Examples
a(10) = 0 + 1 + 1 + 1 + 2 + 3 + 4 + 5 + 7 + 9 + 10 = 43.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Programs
-
Magma
[Round((2*n+1)*(2*n^2+2*n+27)/120): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
-
Maple
seq(ceil((2*n^3+3*n^2+28*n-9)/60),n=0..50)
Formula
a(n) = round((2*n+1)*(2*n^2 + 2*n + 27)/120).
a(n) = floor((2*n^3 + 3*n^2 + 28*n + 36)/60).
a(n) = ceiling((2*n^3 + 3*n^2 + 28*n - 9)/60).
a(n) = a(n-10) + (n+1)*(n-10) + 43.
From R. J. Mathar, Dec 06 2010: (Start)
G.f.: x*(1 - x + x^3 + x^7 - x^9 + x^10) / ( (1+x)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1)*(x-1)^4 ).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-10) - 3*a(n-11) + 3*a(n-12) - a(n-13). (End)
Comments