cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175829 Partial sums of ceiling(n^2/11).

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 12, 17, 23, 31, 41, 52, 66, 82, 100, 121, 145, 172, 202, 235, 272, 313, 357, 406, 459, 516, 578, 645, 717, 794, 876, 964, 1058, 1157, 1263, 1375, 1493, 1618, 1750, 1889, 2035, 2188, 2349, 2518, 2694, 2879, 3072, 3273, 3483, 3702, 3930
Offset: 0

Views

Author

Mircea Merca, Dec 05 2010

Keywords

Comments

Partial sums of A036409.

Examples

			a(11) = 0 + 1 + 1 + 1 + 2 + 3 + 4 + 5 + 6 + 8 + 10 + 11 = 52.
		

Crossrefs

Programs

  • Magma
    [Floor((n+1)*(2*n^2+n+36)/66): n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
  • Maple
    seq(round((2*n+1)*(n^2+n+18)/66),n=0..50)

Formula

a(n) = round((2*n+1)*(n^2 + n + 18)/66).
a(n) = floor((n+1)*(2*n^2 + n + 36)/66).
a(n) = ceiling((2*n^3 + 3*n^2 + 37*n)/66).
a(n) = a(n-11) + (n+1)*(n-11) + 52, n > 10.
G.f.: x*(1+x)*(x^2 - x + 1)*(x^4 - x^3 + x^2 - x + 1)*(x^4 - x^2 + 1) / ( (x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x-1)^4 ). - R. J. Mathar, Dec 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14). - R. J. Mathar, Dec 06 2010