cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175834 Number of real zeros of the polynomial whose coefficients are the decimal expansion of the golden ratio truncated to n places (A011551).

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2
Offset: 0

Views

Author

Michel Lagneau, Dec 05 2010

Keywords

Comments

a(n) = number of real zeros of the polynomial P(n,x) = sum_{k=0..n} p(k) x^k where p(k) are the digits of the decimal expansion of floor(GoldenRatio *10^n) and GoldenRatio = 1.6180339 ....

Examples

			a(4) = 2 because 16180 => P(4,x) = 8x+x^2+6x^3+x^4 has 2 real roots :
x0= - 6.053134348… and x1 = 0.
		

Crossrefs

Programs

  • Maple
    with(numtheory):Digits:=50: T:=array(1..45):for zz from 0 to 43 do:n:=floor(((1+sqrt(5))/2)*10^zz):   for i from 1 to 43 do: T[i]:=0:od: l:=length(n) : n0:=n:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q, 10):n0:=v :u: T[m]:=u:od: x:=fsolve(T[1]+ T[2]*z + T[3]*z^2+ T[4]*z^3+ T[5]*z^4 + T[6]*z^5 + T[7]*z^6 + T[8]*z^7 + T[9]*z^8 + T[10]*z^9+
      T[11]*z^10+ T[12]*z^11 + T[13]*z^12 + T[14]*z^13 + T[15]*z^14+ T[16]*z^15+ T[17]*z^16 + T[18]*z^17 + T[19]*z^18 + T[20]*z^19 + T[21]*z^20 + T[22]*z^21+ T[23]*z^22+ T[24]*z^23 + T[25]*z^24 + T[26]*z^25+ T[27]*z^26+ T[28]*z^27+ T[29]*z^28 + T[30]*z^29 + T[31]*z^30+ T[32]*z^31 + T[33]*z^32 + T[34]*z^33+ T[35]*z^34+ T[36]*z^35 + T[37]*z^36 + T[38]*z^37+ T[39]*z^38 + T[40]*z^39+ T[41]*z^40+ T[42]*z^41 + T[43]*z^42, z, real):x1:=[x]: x2:=nops(x1): printf ( "%d %d %d\n",zz,n,x2):od: