A175836 a(n) = Product_{i=1..n} psi(i) where psi is the Dedekind psi function (A001615).
1, 3, 12, 72, 432, 5184, 41472, 497664, 5971968, 107495424, 1289945088, 30958682112, 433421549568, 10402117189632, 249650812551168, 5991619501228032, 107849151022104576, 3882569436795764736
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..423
- Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49
- Eric Weisstein's World of Mathematics, Le Paige's Theorem
- Index to divisibility sequences
Programs
-
Haskell
a175836 n = a175836_list !! (n-1) a175836_list = scanl1 (*) a001615_list -- Reinhard Zumkeller, Mar 01 2014
-
Maple
A175836 := proc(n) option remember; local p; `if`(n<2,1, n*mul(1+1/p,p=factorset(n))*A175836(n-1)) end: # Peter Luschny, Feb 28 2014
-
Mathematica
JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]; DedekindPsi[n_]:=JordanTotient[n,2]/EulerPhi[n]; A175836[n_]:=Times@@DedekindPsi/@Range[n]
-
PARI
a=direuler(p=2, 100, (1+X)/(1-p*X));for(i=2,#a,a[i]*=a[i-1]);a \\ Charles R Greathouse IV, Jul 29 2011
Comments