A175840 Mirror image of Nicomachus' table: T(n,k) = 3^(n-k)*2^k for n>=0 and 0<=k<=n.
1, 3, 2, 9, 6, 4, 27, 18, 12, 8, 81, 54, 36, 24, 16, 243, 162, 108, 72, 48, 32, 729, 486, 324, 216, 144, 96, 64, 2187, 1458, 972, 648, 432, 288, 192, 128, 6561, 4374, 2916, 1944, 1296, 864, 576, 384, 256, 19683, 13122, 8748, 5832, 3888, 2592, 1728, 1152, 768, 512
Offset: 0
Examples
1; 3, 2; 9, 6, 4; 27, 18, 12, 8; 81, 54, 36, 24, 16; 243, 162, 108, 72, 48, 32;
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- J. O'Connor and E.F. Robertson, Nicomachus of Gerasa, The MacTutor History of Mathematics archive, 2010.
- Jay Kappraff, The Arithmetic of Nicomachus of Gerasa and its Applications to Systems of Proportion, Nexus Network Journal, vol. 2, no. 4 (October 2000).
- Hendrik Lenstra, Aeternitatem Cogita, Nieuw Archief voor Wiskunde, 5/2, maart 2001, pp. 23-28.
- Ivars Peterson, Medieval Harmony, Math Trek, Mathematical Association of America, 1998.
Crossrefs
Programs
-
Haskell
a175840 n k = a175840_tabf !! n !! k a175840_row n = a175840_tabf !! n a175840_tabf = iterate (\xs@(x:_) -> x * 3 : map (* 2) xs) [1] -- Reinhard Zumkeller, Jun 08 2013
-
Maple
A175840 := proc(n,k): 3^(n-k)*2^k end: seq(seq(A175840(n,k),k=0..n),n=0..9);
-
Mathematica
Flatten[Table[3^(n-k) 2^k,{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 08 2013 *)
Formula
T(n,k) = 3^(n-k)*2^k for n>=0 and 0<=k<=n.
T(n,n-k) = T(n,n-k+1) + T(n-1,n-k) for n>=1 and 1<=k<=n with T(n,n) = 2^n for n>=0.
Comments