cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225295 Pandigital numbers with exactly 4 prime factors (with multiplicity).

Original entry on oeis.org

1023456987, 1023458679, 1023458967, 1023465798, 1023465897, 1023465978, 1023465987, 1023467589, 1023467859, 1023468579, 1023468597, 1023468795, 1023469758, 1023478569, 1023479586, 1023479865, 1023485967, 1023486579, 1023486957, 1023487659, 1023487965, 1023489657, 1023495678
Offset: 1

Views

Author

Jonathan Vos Post, May 04 2013

Keywords

Examples

			a(1) = 1023456987 = 3^2 * 7 * 16245349.
a(2) = 1023458679 = 3^3 * 37905877.
a(3) = 1023458967 = 3^2 * 113 * 1006351.
a(4) = 1023465897 = 3^2 * 6379 * 17827.
a(5) = 1023465987 = 3^2 * 53 * 2145631.
a(511032) = 10123456987 = 7^2 * 9833 * 21011.
		

Crossrefs

Cf. A050288 (pandigital primes), A175845 (pandigital numbers).
Cf. A171102 (3-almost primes).

Programs

Formula

A014613 INTERSECTION A171102.
a(n) ~ 6n log n / (log log n)^3. - Charles R Greathouse IV, May 04 2013

Extensions

a(6)-a(23) from Charles R Greathouse IV, May 04 2013

A225298 Smallest pandigital number with exactly n prime factors (with multiplicity).

Original entry on oeis.org

10123457689, 10123456789, 1023456879, 1023456987, 1023456897, 1023456789, 1023456798, 1023457896, 1023486975, 1023479856, 1023458976, 1023475968, 1024973568, 1023579648, 1024897536, 1023657984, 1032984576, 1034698752, 1093865472, 1074659328, 1072963584
Offset: 1

Views

Author

Jonathan Vos Post, May 04 2013

Keywords

Comments

Smallest pandigital n-almost prime.

Examples

			a(1) = 10123457689 is the least prime pandigital number (A221646), that is, the smallest prime containing all the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
a(2) = 10123456789 = 919 * 11015731, the smallest pandigital semiprime.
a(3) = 1023456879, the smallest pandigital number (A171102) that is 3-almost prime (product of three primes with repetition).
a(4) = 1023456987 = 3^2 * 7 * 16245349, which is the smallest pandigital 4-almost prime.
a(5) = 1023456897 = 3^3 * 2417 * 15683.
a(6) = 1023456789 = 3^4 * 2221 * 5689.
a(7) = 1023456798 = 2 * 3^2 * 7 * 13 * 487 * 1283.
a(8) = 1023457896 = 2^3 * 3^3 * 59 * 80309.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k = If[n < 3, 10123456789, 1023456789]}, While[ Union@ IntegerDigits@ k != Range[0, 9] || Total[Last /@ FactorInteger[k]] != n, k++]; k]; Array[a, 10] (* Giovanni Resta, May 06 2013 *)

Formula

a(n) = MIN{k such that k is in A050278 and bigomega(k) = n}.
a(n) = MIN{k such that k is in A050278 and A001222(k) = n}.

Extensions

a(2) corrected and a(9)-a(21) from Giovanni Resta, May 06 2013
Showing 1-2 of 2 results.