A175850 Numbers m with property that m-th triangular number is a sum of divisors of some k-th triangular number (A175849).
1, 13, 12, 384, 575, 783, 4095, 4607, 4095, 6912, 12543, 13824, 16895, 21504, 20735, 27264, 40959, 68256, 76544, 104832, 175104, 130559, 146432, 180224, 129024, 202239, 316224, 328320, 372735, 395199, 512000, 532575, 512000, 732159, 787968, 1181439, 1756160, 2253824
Offset: 1
Keywords
Examples
Some pairs of k,m: 1,1; 8,13; 9,12; 215,384; 458,575; 520,783; 2232,4095; 3251,4607; 3634,4095; 5349,6912; 9489,12543; 10051,13824.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..226
- Zak Seidov, Table of values of n, m
- Zak Seidov, A175849,A175850
Crossrefs
Programs
-
Mathematica
f[n_] := Sqrt[8*DivisorSigma[1, n*(n+1)/2] + 1]; (f /@ Select[Range[10^4], IntegerQ @ f[#] &] - 1)/2 (* Amiram Eldar, Feb 23 2020 *)
-
PARI
{for(n=1, 10^7, m=sigma(n*(n+1)/2); issquare(d=1+8*m) && print1((sqrtint(d)-1)/2, ", "))} \\ edited by Michel Marcus, Feb 23 2020
Extensions
Data corrected and extended by Amiram Eldar, Feb 23 2020