cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175860 a(n) = characteristic function of numbers k such that A175856(m) = k has solution for any m, where A175856(m): a(m) = m for m = noncomposites, a(m) = previous term - 1 for m = composites.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1
Offset: 1

Views

Author

Jaroslav Krizek, Sep 29 2010

Keywords

Comments

a(n) = characteristic function of numbers from A175857(n). a(n) = 1 if A175856(m) = n for any m, else 0. a(n) = 1 for such n that A175862(n) >= 1. a(n) = 0 for such n that A175862(n) = 0. a(n) + A175861(n) = A000012(n).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    A175856list(up_to) = { my(v=vector(up_to)); for(n=1,up_to,if((1==n)||isprime(n),v[n] = n,v[n] = v[n-1] - 1)); (v); };
    \\ This implementation depends on M. El Bachraoui's proof that there exists a prime between 2n and 3n for n > 1 (see Wikipedia-article).
    A175860list(up_to) = { my(v=vector(up_to), A175857 = Set(A175856list(prime(2+primepi(2*up_to))))); for(n=1,up_to,v[n] = (0!=vecsearch(A175857,n))); (v); };
    v175860 = A175860list(up_to);
    A175860(n) = v175860[n]; \\ Antti Karttunen, Nov 08 2018

Formula

a(n) = 1 - A175861(n).