A175883
Number of lattice paths from (0,0) to (n,n) using steps S={(k,0),(0,k)|0
1, 1, 5, 29, 170, 1093, 7346, 50957, 362476, 2629150, 19371533, 144585146, 1090886362, 8306621114, 63752890716, 492671044866, 3830272606911, 29937476853483, 235104315621495, 1854181694878573, 14679397763545597, 116619744085592959, 929412502842262520
Offset: 0
Keywords
Examples
a(3)=29 because we can reach (3,3) in the following ways: by getting to (3,2) in 17 ways and then taking step (0,1), or by getting to (3,1) in 8 ways and then taking step (0,2), or by getting to (3,0) in 4 ways and then taking step (0,3).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(x, y) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, add(b(x-j, y)+b(x, y-j), j=1..3))) end: a:= n-> b(n$2): seq(a(n), n=0..35); # Alois P. Heinz, May 16 2017
-
Mathematica
b[x_, y_] := b[x, y] = If[y > x || y < 0, 0, If[x == 0, 1, Sum[b[x - j, y] + b[x, y - j], {j, 1, 3}]]]; a[n_] := b[n, n]; a /@ Range[0, 35] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)