A175954 Unlabeled (cyclic) Motzkin numbers: number of ways of drawing any number of nonintersecting chords joining n unlabeled points equally spaced on a circle, up to rotations of the circle.
1, 1, 2, 2, 4, 5, 12, 19, 46, 95, 230, 528, 1320, 3219, 8172, 20714, 53478, 138635, 363486, 957858, 2543476, 6788019, 18218772, 49120019, 133036406, 361736109, 987316658, 2703991820, 7429445752, 20473889133, 56579632732, 156766505691
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Andrew Howroyd, Chord Configuration Symmetries
Programs
-
Mathematica
a1006[0] = 1; a1006[n_Integer] := a1006[n] = a1006[n-1] + Sum[a1006[k]* a1006[n -2-k], {k, 0, n-2}]; a142150[n_] := n*(1 + (-1)^n)/4; a2426[n_] := Coefficient[(1 + x + x^2)^n, x, n]; a[0] = 1; a[n_] := (1/n)*(a1006[n]+a142150[n]*a1006[n/2-1] + Sum[EulerPhi[ n/d]*a2426[d], {d, Most @ Divisors[n]}]); Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
Formula
For odd prime p, a(p) = (A001006(p) - 1)/p + 1.
a(n) = (1/n) * (A001006(n) + A142150(n) * A001006(n/2-1) + Sum{d|n, dA002426(d)). - Andrew Howroyd, Apr 01 2017
Comments