A176009 Smallest prime p = p(k) containing all decimal digits from "1" up to "k" (k = 1,2, ..., 9, 0).
11, 211, 1123, 1423, 112543, 1124653, 1234657, 112345687, 1123468597, 10123457689
Offset: 1
Examples
k = 1: 11 = prime(5), 1st term k = 2: 21 is composite, 211 = prime(47), 2nd term k = 3, digits 1,2 and 3: as 1+2+3 = 3 * 2 prime p(3) has d > 3 digits: prime(216) = 1321 > 1231 = prime(202) > 1123 = prime(188), 3rd term k = 4: 1423 = prime(224), k = 5: 112543 = prime(10665) k = 6 = 2 * 3: 1124653 = prime(87496) k = 7: p(7) = 1234657 = prime(95365) = prime(n) Curious as sod(p(7)) = 1+2+3+4+6+5+7 = 28 = 9+5+3+6+5 = sod(95365) = sod(n), 7th term p(7) is a so-called Honaker prime k = 8: 112345687 = prime(6429837) k = 9 = 3 * 3: 1123468597 = prime(56789283) All ten decimal digits: 10123457689 = prime(460412186)
Comments