A176010 Positive numbers k such that k^2 == 2 (mod 97).
14, 83, 111, 180, 208, 277, 305, 374, 402, 471, 499, 568, 596, 665, 693, 762, 790, 859, 887, 956, 984, 1053, 1081, 1150, 1178, 1247, 1275, 1344, 1372, 1441, 1469, 1538, 1566, 1635, 1663, 1732, 1760, 1829, 1857, 1926, 1954, 2023, 2051, 2120, 2148, 2217
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[(-97+41*(-1)^n+194*n)/4: n in [1..50]]; // Vincenzo Librandi, Jul 13 2012
-
Mathematica
Table[(97-41*(-1)^(n-1)+194*(n-1))/4,{n,1,50}] (* Vincenzo Librandi, Jul 13 2012 *) Select[Range[2500],PowerMod[#,2,97]==2&] (* or *) LinearRecurrence[{1,1,-1},{14,83,111},50] (* Harvey P. Dale, Mar 28 2024 *)
Formula
a(n) = (-97 + 41*(-1)^n + 194*n)/4.
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3; a(1)=14, a(2)=83, a(3)=111.
a(n) = a(n-1) + 69 for n even, a(n) = a(n-1) + 28 for n odd, a(1)=14.
G.f.: x*(14+69*x+14*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Aug 24 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(14*Pi/97)*Pi/97. - Amiram Eldar, Feb 28 2023