cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176010 Positive numbers k such that k^2 == 2 (mod 97).

Original entry on oeis.org

14, 83, 111, 180, 208, 277, 305, 374, 402, 471, 499, 568, 596, 665, 693, 762, 790, 859, 887, 956, 984, 1053, 1081, 1150, 1178, 1247, 1275, 1344, 1372, 1441, 1469, 1538, 1566, 1635, 1663, 1732, 1760, 1829, 1857, 1926, 1954, 2023, 2051, 2120, 2148, 2217
Offset: 1

Views

Author

Vincenzo Librandi, Apr 06 2010

Keywords

Programs

  • Magma
    [(-97+41*(-1)^n+194*n)/4: n in [1..50]]; // Vincenzo Librandi, Jul 13 2012
  • Mathematica
    Table[(97-41*(-1)^(n-1)+194*(n-1))/4,{n,1,50}] (* Vincenzo Librandi, Jul 13 2012 *)
    Select[Range[2500],PowerMod[#,2,97]==2&] (* or *) LinearRecurrence[{1,1,-1},{14,83,111},50] (* Harvey P. Dale, Mar 28 2024 *)

Formula

a(n) = (-97 + 41*(-1)^n + 194*n)/4.
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3; a(1)=14, a(2)=83, a(3)=111.
a(n) = a(n-1) + 69 for n even, a(n) = a(n-1) + 28 for n odd, a(1)=14.
G.f.: x*(14+69*x+14*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Aug 24 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(14*Pi/97)*Pi/97. - Amiram Eldar, Feb 28 2023