A176021
Triangle T(n, k) = 1 - (-1)^n*(n! + 1) + A176013(n, k) + A176013(n, n-k+1) read by rows.
Original entry on oeis.org
1, 1, 1, 1, -10, 1, 1, 72, 72, 1, 1, -528, -678, -528, 1, 1, 4770, 6780, 6780, 4770, 1, 1, -48025, -87568, -68458, -87568, -48025, 1, 1, 524384, 1287776, 947520, 947520, 1287776, 524384, 1, 1, -6169282, -19982590, -18010942, -10305790, -18010942, -19982590, -6169282, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, -10, 1;
1, 72, 72, 1;
1, -528, -678, -528, 1;
1, 4770, 6780, 6780, 4770, 1;
1, -48025, -87568, -68458, -87568, -48025, 1;
1, 524384, 1287776, 947520, 947520, 1287776, 524384, 1;
1, -6169282, -19982590, -18010942, -10305790, -18010942, -19982590, -6169282, 1;
-
A176013:= func< n,k | (-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) >;
[1 - (-1)^n*(Factorial(n) + 1) + A176013(n, k) + A176013(n, n-k+1) : k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 08 2021
-
A176013[n_, k_]:= (-1)^n*(n!/(k*k!))*Binomial[n-1, k-1]*Binomial[n, k-1];
T[n_, m_]:= 1 - (-1)^n*(n! + 1) + A176013[n, k] + A176013[n, n-k+1];
Table[T[n, k], {n, 12}, {k, n}]//Flatten
-
def A176013(n, k): return (-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1)
flatten([[1 - (-1)^n*(factorial(n) + 1) + A176013(n, k) + A176013(n, n-k+1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 08 2021
A176022
Triangle T(n, k) = A176013(n, k) + A176013(n, n-k+1), read by rows.
Original entry on oeis.org
-2, 3, 3, -7, -18, -7, 25, 96, 96, 25, -121, -650, -800, -650, -121, 721, 5490, 7500, 7500, 5490, 721, -5041, -53067, -92610, -73500, -92610, -53067, -5041, 40321, 564704, 1328096, 987840, 987840, 1328096, 564704, 40321, -362881, -6532164, -20345472, -18373824, -10668672, -18373824, -20345472, -6532164, -362881
Offset: 1
Triangle begins as:
-2;
3, 3;
-7, -18, -7;
25, 96, 96, 25;
-121, -650, -800, -650, -121;
721, 5490, 7500, 7500, 5490, 721;
-5041, -53067, -92610, -73500, -92610, -53067, -5041;
40321, 564704, 1328096, 987840, 987840, 1328096, 564704, 40321;
-
A176013:= func< n, k | (-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) >;
[A176013(n, k) + A176013(n, n-k+1) : k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 15 2021
-
(* First program *)
T[n_, m_]:= ((-1)^n*n!/(m*m!))*Binomial[n-1, m-1]*Binomial[n, m-1] + ((-1)^n*n!)/((n-m+1)*(n-m+1)!)*Binomial[n-1, n-m] Binomial[n, n-m];
Table[T[n, m], {n,10}, {m,n}]//Flatten
(* Second program *)
A176013[n_, k_] := (-1)^n*(n!/(k*k!))*Binomial[n-1, k-1]*Binomial[n, k-1];
T[n_, k_]:= A176013[n, k] + A176013[n, n-k+1];
Table[T[n, k], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
-
def A176013(n, k): return (-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1)
flatten([[A176013(n, k) + A176013(n, n-k+1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 15 2021
A174696
Triangle T(n, k) = n!*(1/k)^2*(binomial(n-1, k-1)*binomial(n, k-1))^2 - n! + 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 49, 1, 1, 841, 841, 1, 1, 11881, 47881, 11881, 1, 1, 161281, 1799281, 1799281, 161281, 1, 1, 2217601, 55560961, 154344961, 55560961, 2217601, 1, 1, 31570561, 1548892801, 9680791681, 9680791681, 1548892801, 31570561, 1, 1, 469929601, 40967337601, 501853968001, 1129171881601, 501853968001, 40967337601, 469929601, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 49, 1;
1, 841, 841, 1;
1, 11881, 47881, 11881, 1;
1, 161281, 1799281, 1799281, 161281, 1;
1, 2217601, 55560961, 154344961, 55560961, 2217601, 1;
1, 31570561, 1548892801, 9680791681, 9680791681, 1548892801, 31570561, 1;
-
A174696:= func< n, k | (Factorial(n)/k^2)*(Binomial(n-1, k-1)*Binomial(n, k-1))^2 - Factorial(n) + 1 >;
[A174696(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 09 2021
-
T[n_, m_]:= n!*(1/k)^2*(Binomial[n-1, k-1]*Binomial[n, k-1])^2 - n! + 1;
Table[T[n, k], {n,12}, {k,n}]//Flatten
-
def A174696(n, k): return (factorial(n)/k^2)*(binomial(n-1, k-1)*binomial(n, k-1))^2 - factorial(n) + 1
flatten([[A174696(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 09 2021
A174694
Triangle T(n, k) = n!*(1/k)*binomial(n-1, k-1)*binomial(n, k-1) - n! + 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 13, 1, 1, 121, 121, 1, 1, 1081, 2281, 1081, 1, 1, 10081, 35281, 35281, 10081, 1, 1, 100801, 524161, 876961, 524161, 100801, 1, 1, 1088641, 7862401, 19716481, 19716481, 7862401, 1088641, 1, 1, 12700801, 121564801, 426384001, 639757441, 426384001, 121564801, 12700801, 1
Offset: 1
Triangle begin as:
1;
1, 1;
1, 13, 1;
1, 121, 121, 1;
1, 1081, 2281, 1081, 1;
1, 10081, 35281, 35281, 10081, 1;
1, 100801, 524161, 876961, 524161, 100801, 1;
1, 1088641, 7862401, 19716481, 19716481, 7862401, 1088641, 1;
1, 12700801, 121564801, 426384001, 639757441, 426384001, 121564801, 12700801, 1;
-
A174694:= func< n, k | (Factorial(n)/k)*Binomial(n-1, k-1)*Binomial(n, k-1) - Factorial(n) + 1 >;
[A174694(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 09 2021
-
T[n_, k_]:= n!*(1/k)*Binomial[n-1, k-1]*Binomial[n, k-1] - n! + 1;
Table[T[n, k], {n,12}, {k,n}]//Flatten
-
def A174694(n, k): return (factorial(n)/k)*binomial(n-1, k-1)*binomial(n, k-1) - factorial(n) + 1
flatten([[A174694(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 09 2021
Showing 1-4 of 4 results.
Comments