cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176123 Irregular triangle, read by rows, T(n, k) = binomial(n-(k-1),k-1), 1 <= k <= floor(n/2-1).

Original entry on oeis.org

1, 1, 1, 5, 1, 6, 1, 7, 15, 1, 8, 21, 1, 9, 28, 35, 1, 10, 36, 56, 1, 11, 45, 84, 70, 1, 12, 55, 120, 126, 1, 13, 66, 165, 210, 126, 1, 14, 78, 220, 330, 252, 1, 15, 91, 286, 495, 462, 210, 1, 16, 105, 364, 715, 792, 462, 1, 17, 120, 455, 1001, 1287, 924, 330, 1, 18, 136, 560, 1365, 2002, 1716, 792
Offset: 4

Views

Author

Roger L. Bagula, Dec 07 2010

Keywords

Comments

The row sum is A099572 which has limiting ratio of (1+sqrt(5))/2.
This is Pascal's triangle (A007318) read along upward sloping diagonals and truncated.

Examples

			Triangle begins as:
  1;
  1;
  1,  5;
  1,  6;
  1,  7, 15;
  1,  8, 21;
  1,  9, 28,  35;
  1, 10, 36,  56;
  1, 11, 45,  84,  70;
  1, 12, 55, 120, 126;
  1, 13, 66, 165, 210, 126;
		

Crossrefs

Programs

  • GAP
    Flat(List([4..20], n-> List([1..Int((n-2)/2)], k-> Binomial(n-k+1,k-1) ))); # G. C. Greubel, Nov 27 2019
  • Magma
    [Binomial(n-k+1,k-1): k in [1..Floor((n-2)/2)], n in [4..20]]; // G. C. Greubel, Nov 27 2019
    
  • Maple
    seq(seq( binomial(n-k+1, k-1), k=1..floor((n-2)/2)), n=4..20); # G. C. Greubel, Nov 27 2019
  • Mathematica
    Table[Binomial[n-k+1, k-1], {n,4,20}, {k, Floor[(n-2)/2]}]//Flatten
  • PARI
    T(n,k) = binomial(n-k+1,k-1);
    for(n=4,20, for(k=1, (n-2)\2, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 27 2019
    
  • Sage
    [[binomial(n-k+1,k-1) for k in (1..floor((n-2)/2))] for n in (4..20)] # G. C. Greubel, Nov 27 2019
    

Extensions

Edited by N. J. A. Sloane, Dec 09 2010
More terms added by G. C. Greubel, Nov 27 2019