A176131 Lesser of twin primes p such that 6*p+1 is greater of twin primes.
3, 5, 17, 107, 137, 347, 2027, 3257, 4217, 4547, 9767, 15137, 20717, 23537, 25847, 32057, 37307, 38327, 43607, 48407, 53147, 53897, 59357, 60167, 62927, 86027, 90527, 92957, 94847, 95987, 98387, 99137, 99347, 100517, 102497, 108707, 111227
Offset: 1
Keywords
Examples
3 is a term since 6*3 - 1 = 17 and 6*3 + 1 = 19 are twin primes. 5 is a term since 6*5 - 1 = 29 and 6*5 + 1 = 31 are twin primes. 17 is a term since 6*17 - 1 = 101 and 6*17 + 1 = 103 are twin primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
lst={};Do[p0=Prime[n];p1=Prime[n+1];If[p1-p0==2&&PrimeQ[p2=p0*6+1]&&PrimeQ[p2-2],AppendTo[lst,p0]],{n,8!}];lst Select[Transpose[Select[Partition[Prime[Range[11000]],2,1],#[[2]]-#[[1]]==2&]][[1]],And@@PrimeQ[6#+{1,-1}]&] (* Harvey P. Dale, Feb 05 2013 *)