A176153 Triangle T(n,k) = Sum_{j=0..k} Stirling1(n, n-j)*binomial(n,j), read by rows.
1, 1, 1, 1, -1, -1, 1, -8, -2, -2, 1, -23, 43, 19, 19, 1, -49, 301, -199, -79, -79, 1, -89, 1186, -3314, 796, 76, 76, 1, -146, 3529, -22196, 34644, -2400, 2640, 2640, 1, -223, 8793, -100967, 372863, -362529, 3375, -36945, -36945, 1, -323, 19333, -361691, 2466883, -6010901, 3911515, -33509, 329371, 329371
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, -1, -1; 1, -8, -2, -2; 1, -23, 43, 19, 19; 1, -49, 301, -199, -79, -79; 1, -89, 1186, -3314, 796, 76, 76; 1, -146, 3529, -22196, 34644, -2400, 2640, 2640; 1, -223, 8793, -100967, 372863, -362529, 3375, -36945, -36945;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> Sum([0..k], j-> (-1)^j*Stirling1(n,n-j)* Binomial(n,j)) ))); # G. C. Greubel, Nov 26 2019
-
Magma
[(&+[StirlingFirst(n, n-j)*Binomial(n,j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
-
Maple
seq(seq( add(combinat[stirling1](n,n-j)*binomial(n,j), j=0..k), k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
-
Mathematica
T[n_, k_]:= Sum[StirlingS1[n, n-j]*Binomial[n, j], {j,0,k}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
PARI
T(n,k) = sum(j=0,k, stirling(n,n-j,1)*binomial(n,j)); \\ G. C. Greubel, Nov 26 2019
-
Sage
[[sum((-1)^j*stirling_number1(n, n-j)*binomial(n,j) for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
Formula
T(n, k) = Sum_{j=0..k} Stirling1(n, n-j)*binomial(n, j).
T(n, n) = A317274(n). - G. C. Greubel, Aug 03 2021