A176155 Regular triangle, T(n, k) = f(n, k) - f(n, 0) + 1, where f(n, k) = Sum_{j=0..k} StirlingS1(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} StirlingS1(n, n-j)*binomial(n, j), read by rows.
1, 1, 1, 1, -1, 1, 1, -8, -8, 1, 1, -23, 67, -23, 1, 1, -49, 181, 181, -49, 1, 1, -89, 1906, -6704, 1906, -89, 1, 1, -146, -1511, 9808, 9808, -1511, -146, 1, 1, -223, 49113, -426551, 782671, -426551, 49113, -223, 1, 1, -323, -343547, 3220453, -3873389, -3873389, 3220453, -343547, -323, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, -1, 1; 1, -8, -8, 1; 1, -23, 67, -23, 1; 1, -49, 181, 181, -49, 1; 1, -89, 1906, -6704, 1906, -89, 1; 1, -146, -1511, 9808, 9808, -1511, -146, 1; 1, -223, 49113, -426551, 782671, -426551, 49113, -223, 1; 1, -323, -343547, 3220453, -3873389, -3873389, 3220453, -343547, -323, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
f:= function(n,k) return Sum([0..k], j-> (-1)^j*Stirling1(n,n-j)*Binomial(n,j)) + Sum([0..n-k], j-> (-1)^j*Stirling1(n, n-j)*Binomial(n,j)); end; Flat(List([0..10], n-> List([0..n], k-> f(n, k)-f(n,0)+1 ))); # G. C. Greubel, Nov 26 2019
-
Magma
f:= func< n,k | (&+[StirlingFirst(n,n-j)*Binomial(n,j): j in [0..k]]) + (&+[StirlingFirst(n,n-j)*Binomial(n,j): j in [0..n-k]]) >; [f(n,k) - f(n,0) + 1: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
-
Maple
with(combinat); f:= proc(n, k) option remember; add(stirling1(n, n-j)*binomial(n, j), j=0..k) + add(stirling1(n, n-j)* binomial(n, j), j=0..n-k); end; seq(seq(f(n,k) -f(n,0) +1, k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
-
Mathematica
f[n_, k_]:= Sum[StirlingS1[n, n-j]*Binomial[n, j], {j,0,k}] + Sum[StirlingS1[n, n-j]*Binomial[n, j], {j,0,n-k}]; Table[f[n, k] - f[n, 0] + 1, {n,0,10}, {k,0,n}]//Flatten
-
PARI
f(n,k) = sum(j=0,k, stirling(n,n-j,1)*binomial(n,j)) + sum(j=0,n-k, stirling(n, n-j,1)*binomial(n,j)); T(n,k) = f(n,k) - f(n,0) + 1; \\ G. C. Greubel, Nov 26 2019
-
Sage
def f(n, k): return sum((-1)^j*stirling_number1(n,n-j)*binomial(n,j) for j in (0..k)) + sum((-1)^j*stirling_number1(n, n-j)*binomial(n,j) for j in (0..n-k)) [[f(n, k)-f(n,0)+1 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
Formula
With f(n, k) = Sum_{j=0..k} StirlingS1(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} StirlingS1(n, n-j)*binomial(n, j) then T(n, k) = f(n, k) - f(n, 0) + 1.
Extensions
Name edited by G. C. Greubel, Nov 27 2019
Comments