cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176179 Primes such that the sum of digits, the sum of the squares of digits and the sum of 3rd powers of their digits is also a prime.

Original entry on oeis.org

11, 101, 113, 131, 199, 223, 311, 337, 353, 373, 449, 461, 463, 641, 643, 661, 733, 829, 883, 919, 991, 1013, 1031, 1103, 1301, 1439, 1451, 1471, 1493, 1499, 1697, 1741, 1949, 2089, 2111, 2203, 2333, 2441, 2557, 3011, 3037, 3307, 3323, 3347, 3491, 3583, 3637, 3659, 3673, 3853, 4049, 4111, 4139, 4241, 4337, 4373, 4391, 4409
Offset: 1

Views

Author

Michel Lagneau, Apr 10 2010

Keywords

Comments

See A091365 for the exceptions for the case where the sum of the digits of p is not prime, but the sum of the cubes of the digits of p is prime.

Examples

			For the prime number n =5693 we obtain :
5 + 6 + 9 + 3 = 23 ;
5^2 + 6^2 + 9^2 + 3^2 = 151 ;
5^3 + 6^3 + 9^3 + 3^3 = 1097.
		

References

  • Charles W. Trigg, Journal of Recreational Mathematics, Vol. 20(2), 1988.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 10000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:s2:=s2+u^2:s3:=s3+u^3:od:if type(n,prime)=true and type(s1,prime)=true and type(s2,prime)=true and type(s3,prime)=true then print(n):else fi:od:
  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n]}, And@@PrimeQ[Total/@{idn,idn^2,idn^3}]]; Select[Prime[Range[600]],okQ]  (* Harvey P. Dale, Jan 18 2011 *)
  • Python
    from sympy import isprime, primerange
    def ok(p):
        return all(isprime(sum(int(d)**k for d in str(p))) for k in [1, 2, 3])
    def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
    print(aupto(4409)) # Michael S. Branicky, Nov 23 2021

Extensions

Corrected and extended by Harvey P. Dale, Jan 18 2011