cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A176181 Primes p(n) such that gcd(p(n)-1, p(n+1)-1) > gcd(p(n)+1, p(n+1)+1).

Original entry on oeis.org

13, 31, 37, 61, 73, 89, 97, 109, 113, 151, 157, 181, 193, 199, 211, 229, 241, 271, 277, 313, 331, 349, 367, 373, 389, 397, 401, 421, 433, 449, 457, 523, 541, 571, 601, 607, 613, 619, 631, 661, 673, 691, 701, 727, 733, 751, 757, 761, 769, 811, 853, 877, 929
Offset: 1

Views

Author

Keywords

Comments

Sequence does not contain any lesser of twin primes A001359. (Proof. If p(n+1) = p(n)+2, then gcd(p(n)-1, p(n+1)-1) = 2 = gcd(p(n)+1, p(n+1)+1), so p(n) is not a term.) - Jonathan Sondow, Feb 03 2012

Crossrefs

Programs

  • Mathematica
    lst={}; Do[p0=Prime[n]; p1=Prime[n+1]; If[GCD[p0-1,p1-1] > GCD[p0+1,p1+1], AppendTo[lst,p0]], {n,200}]; lst
    Transpose[Select[Partition[Prime[Range[200]],2,1],GCD@@(#-1)>GCD@@(#+1)&]] [[1]] (* Harvey P. Dale, Sep 30 2014 *)

Extensions

Definition clarified by Jonathan Sondow, Feb 03 2012

A176182 Primes p(n) such that gcd(p(n)-1, p(n+1)-1) < gcd(p(n)+1, p(n+1)+1).

Original entry on oeis.org

7, 19, 23, 43, 47, 53, 67, 79, 83, 103, 127, 131, 139, 163, 167, 173, 223, 233, 251, 257, 263, 293, 307, 353, 359, 379, 383, 409, 439, 443, 463, 467, 479, 487, 491, 499, 503, 509, 557, 563, 587, 593, 643, 647, 653, 677, 683, 709, 719, 739, 743, 797, 823, 829
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p0=Prime[n];p1=Prime[n+1];If[GCD[p0-1,p1-1]Harvey P. Dale, Jul 06 2011 *)
Showing 1-2 of 2 results.