cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176196 Primes such that the sum of k-th powers of digits, for each of k = 1, 2, 3, and 4, is also a prime.

Original entry on oeis.org

11, 101, 113, 131, 223, 311, 353, 461, 641, 661, 883, 1013, 1031, 1103, 1301, 1439, 1451, 1471, 1493, 1697, 1741, 2111, 2203, 3011, 3347, 3491, 3659, 4139, 4337, 4373, 4391, 4733, 4931, 5303, 5639, 5693, 6197, 6359, 6719, 6791, 6917, 6971, 7411, 7433
Offset: 1

Views

Author

Michel Lagneau, Apr 11 2010

Keywords

Comments

For k = 1, 2, and 3 see A176179

Examples

			For the prime number n=14549 we obtain :
1 + 4 + 5 + 4 + 9 = 23 ;
1^2 +4^2 + 5^2 +4^2 + 9^2 = 139 ;
1^3 +4^3 + 5^3 +4^3 + 9^3 = 983 ;
1^4 +4^4 + 5^4 +4^4 + 9^4 = 7699 ;
		

References

  • Charles W. Trigg, Journal of Recreational Mathematics, Vol. 20(2), 1988.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 20000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:s4:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:s2:=s2+u^2:s3:=s3+u^3:s4:=s4+u^4:od:if type(n,prime)=true and type(s1,prime)=true and type(s2,prime)=true and type(s3,prime)=true and type(s4,prime)=true then print(n):else fi:od:
  • Mathematica
    Select[Prime[Range[1000]],And@@PrimeQ[Total/@Table[IntegerDigits[#]^n,{n,4}]]&] (* Harvey P. Dale, Jun 16 2013 *)
  • Python
    from sympy import isprime, primerange
    def ok(p):
        return all(isprime(sum(int(d)**k for d in str(p))) for k in range(1, 5))
    def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
    print(aupto(7443)) # Michael S. Branicky, Nov 23 2021