A176198 Triangle, read by rows, T(n, k) = f(n,k,q) - f(n,0,q) + 1, where f(n, k, q) = [x^k](p(x,n,q)), p(x, n, q) = (1-x)^(n+1)*Sum_{k >= 0} ( (q*k+1)^n + (q*(k+1)-1)^n )*x^k, and q = 2.
1, 1, 1, 1, 11, 1, 1, 45, 45, 1, 1, 151, 459, 151, 1, 1, 473, 3363, 3363, 473, 1, 1, 1443, 21085, 47095, 21085, 1443, 1, 1, 4357, 121313, 519445, 519445, 121313, 4357, 1, 1, 13103, 663223, 4970575, 9350027, 4970575, 663223, 13103, 1, 1, 39345, 3512679, 43415943, 138826587, 138826587, 43415943, 3512679, 39345, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 11, 1; 1, 45, 45, 1; 1, 151, 459, 151, 1; 1, 473, 3363, 3363, 473, 1; 1, 1443, 21085, 47095, 21085, 1443, 1; 1, 4357, 121313, 519445, 519445, 121313, 4357, 1; 1, 13103, 663223, 4970575, 9350027, 4970575, 663223, 13103, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
m:=13; R
:=PowerSeriesRing(Integers(), m+2); p:= func< x,n,q | (1-x)^(n+1)*(&+[((q*j+1)^n + (q*(j+1)-1)^n)*x^j: j in [0..m+2]]) >; f:= func< n,k,q | Coefficient(R!( p(x,n,q) ), k) >; T:= func< n,k,q | f(n,k,q) - f(n,0,q) + 1 >; // T = A176198 [T(n,k,2): k in [0..n], n in [0..m]]; // G. C. Greubel, Jun 18 2024 -
Mathematica
m:=13; p[x_,n_,q_]:= (1-x)^(n+1)*Sum[((q*j+1)^n+(q*(j+1)-1)^n)*x^j, {j,0,m+ 2}]; f[n_,k_,q_]:= Coefficient[Series[p[x,n,q], {x,0,m+2}], x, k]; T[n_,k_,q_]:= f[n,k,q] - f[n,0,q] + 1; (* T = A176198 *) Table[T[n,k,2], {n,0,m}, {k,0,n}]//Flatten
-
SageMath
m=13 def p(x,n,q): return (1-x)^(n+1)*sum(((q*j+1)^n + (q*(j+1)-1)^n)*x^j for j in range(m+3)) def f(n,k,q): return ( p(x,n,q) ).series(x, n+1).list()[k] def T(n,k,q): return f(n,k,q) - f(n,0,q) + 1 # T = A176198 flatten([[T(n,k,2) for k in range(n+1)] for n in (0..m)]) # G. C. Greubel, Jun 18 2024
Formula
T(n, k) = f(n, k, q) - f(n, 0, q) + 1, where f(n, k, q) = [x^k]( p(x, n, q) ), p(x, n, q) = (1-x)^(n+1) * Sum_{k >= 0} ( (q*k + 1)^n + (q*(k+1) - 1)^n )*x^k, and q = 2.
T(n, k) f(n, k, q) - f(n, 0, q) + 1, where f(n, k, q) = [x^k]( p(x, n, q) ), p(x, n, q) = q^n * (1-x)^(n+1) * ( LerchPhi(x, -n, 1/q) + LerchPhi(x, -n, (q-1)/q) ), and q = 2.
T(n, n-k) = T(n, k).
Extensions
Edited by G. C. Greubel, Jun 19 2024