A176207 Permutations of partitions listed in A080577 with partition lengths listed in A176208; the table has shape A058884.
1, 2, 1, 3, 1, 2, 1, 2, 3, 1, 4, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 4, 2, 3, 1, 1, 5, 1, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 4, 2, 5, 2, 4, 1, 2, 3, 2, 2, 3, 1, 1, 1, 6, 1, 5, 1, 1, 4, 2, 1, 4, 1, 1, 1, 3, 3, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 3
Examples
Triangle begins: {{1,2}}, {{1,3}, {1,2,1}}, {{2,3}, {1 4}, {1,3,1}, {1,2,2}, {1,2,1,1}}, Or more concisely: {12}, {13, 121}, {23, 14, 131, 122, 1211}, {24, 231, 15, 141, 132, 1311, 1221, 12111}, ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..1607 (rows 3..12)
Programs
-
PARI
\\ here R(n) returns n-th row as vector of vectors. L(n,k)={vecsort([Vecrev(p) | p<-partitions(k), p[#p] > n-k], , 4)} R(n)={ concat(vector(n-1, k, [concat([n-k],p) | p<-L(n,k)])) } { for(n=3, 6, print(concat(R(n)))) } \\ Andrew Howroyd, Apr 21 2023
Extensions
Offset corrected and a(50) and beyond from Andrew Howroyd, Apr 21 2023
Comments