cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176212 Terms of A176211, duplicates removed.

Original entry on oeis.org

6, 9, 13, 20, 31, 36, 49, 54, 78, 81, 117, 120, 125, 169, 180, 186, 201, 216, 260, 279, 294, 324, 400, 403, 441, 468, 486, 523, 620, 637, 702, 720, 729, 750, 845, 961, 980, 1014, 1053, 1080, 1116, 1125, 1206, 1296, 1366, 1519, 1521, 1560, 1620, 1625, 1674, 1764, 1809, 1944, 2197
Offset: 1

Views

Author

Vladimir Shevelev, Apr 12 2010

Keywords

Comments

The terms are permanents of a set of certain symmetric (0,1)-matrices as detailed in A176211. Thus the sequence solves a symmetric version of Gristein problem: to find all the values of permanent of all square (0,1) matrices, which contain exactly three 1's in each row and column (see the list of unsolved problems in chapter 8 of Minc's book).

References

  • H. Minc, Permanents, Addison-Wesley, 1978.

Crossrefs

Programs

  • PARI
    f(n) = fibonacci(n+1) + fibonacci(n-1) + 2; \\ A000211
    lista(nn) = {my(v = vector(nn, k, f(k+2))); my(vmax = vecmax(v)); my(w =  vector(nn, k, [0, logint(vmax, v[k])])); my(list=List()); forvec(x = w, if (vecmax(x), my(y = prod(k=1, #v, v[k]^x[k])); if (y <= vmax, listput(list, y)););); Vec(vecsort(list,,8));}
    lista(14) \\ Michel Marcus, Jan 06 2021