cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A176247 Primes p which give a prime iterated by f(p) = 2*p + 13 for at least two steps.

Original entry on oeis.org

2, 5, 17, 23, 47, 107, 113, 227, 233, 317, 353, 467, 743, 827, 1013, 1163, 1223, 1283, 1493, 1697, 1823, 1877, 2063, 2333, 2543, 2957, 3323, 3467, 3767, 3797, 4013, 4397, 4523, 5297, 5393, 5507, 5693, 5717, 5897, 5927, 6053, 6317, 6473, 6737, 6947, 6977
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 13 2010

Keywords

Comments

Subsequence of A176223.
p, f(p) = 2*p + 13, q = f(f(p)) = 4*p + 39 to be primes.
Necessarily for such primes p > 5, the LSD (least significant digit) is either 3 or 7, since an LSD of 1 gives the LSD of f(p) equal to 5 and an LSD of 9 gives the LSD of f(f(p)) equal to 5.

Examples

			f(2) = 17 = prime(7), f(17) = 47 = prime(15), 2 is first term.
f(5) = 23 = prime(9), f(23) = 59 = prime(17), 5 is 2nd term.
Note first resulting palindromic prime: f(3323) = 6659 = prime(858), q = 13331 = prime(1583) = palprime(29).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^3], AllTrue[NestList[2 # + 13 &, #, 2], PrimeQ] &] (* Michael De Vlieger, Mar 14 2020 *)
  • PARI
    isok(n) = isprime(n) && isprime(p=2*n+13) && isprime(2*p+13) \\ Michel Marcus, Jun 28 2013

Extensions

More terms from Michel Marcus, Jun 28 2013

A176268 Primes of a Generalized Cunningham chain of length 9 by the function f(p) = 2 * p + 13.

Original entry on oeis.org

3467, 6947, 13907, 27827, 55667, 111347, 222707, 445427, 890867
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 13 2010

Keywords

Comments

See comments and references of A176223 and A176247
Chain of 8 primes: 2, 17, 47, 107, 227, 467, 947, 1907
It is conjectured that arbitrarily long such chains exist

Examples

			3467 = prime(486), (3467 - 13)/ 2 = 1727 = 11 * 157 is composite
f(3467) = 6947 = prime(891), f(6947) = 13907 = prime(1644)
f(13907) = 27827 = prime(3040), f( 27827) = 55667 = prime(5649)
f(55667) = 111347 = prime(10565), f(111347) = 222707 = prime(19832)
f(222707) = 445427 = prime(37374), f(445427) = 890867 = prime(70612)
f(890867) = 1781747 = 11 * 161977
3467 is smallest prime for such a chain of 9 primes
		

References

  • Joe Buhler: Algorithmic Number Theory: Third International Symposium, ANTS-III, New York: Springer, 1998
  • David J. Darling: The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes, Hoboken: John Wiley & Sons, 2004
  • Paulo Ribenboim: Die Welt der Primzahlen. Geheimnisse und Rekorde, Springer-Verlag GmbH & Co. KG, 2006

Crossrefs

Showing 1-2 of 2 results.