cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176231 Coefficient array of orthogonal polynomials whose moment sequence is the double factorial numbers A001147.

Original entry on oeis.org

1, -1, 1, 3, -6, 1, -15, 45, -15, 1, 105, -420, 210, -28, 1, -945, 4725, -3150, 630, -45, 1, 10395, -62370, 51975, -13860, 1485, -66, 1, -135135, 945945, -945945, 315315, -45045, 3003, -91, 1, 2027025, -16216200, 18918900, -7567560, 1351350, -120120, 5460, -120, 1
Offset: 0

Views

Author

Paul Barry, Apr 12 2010

Keywords

Comments

Exponential Riordan array [1/sqrt(1+2x),x/(1+2x)]. Inverse of A176230.
Diagonal sums are an alternating sign version of A025164.

Examples

			Triangle begins
  1,
  -1, 1,
  3, -6, 1,
  -15, 45, -15, 1,
  105, -420, 210, -28, 1,
  -945, 4725, -3150, 630, -45, 1,
  10395, -62370, 51975, -13860, 1485, -66, 1,
  -135135, 945945, -945945, 315315, -45045, 3003, -91, 1,
  2027025, -16216200, 18918900, -7567560, 1351350, -120120, 5460, -120, 1
Production matrix is
  -1, 1,
  2, -5, 1,
  0, 12, -9, 1,
  0, 0, 30, -13, 1,
  0, 0, 0, 56, -17, 1,
  0, 0, 0, 0, 90, -21, 1,
  0, 0, 0, 0, 0, 132, -25, 1,
  0, 0, 0, 0, 0, 0, 182, -29, 1,
  0, 0, 0, 0, 0, 0, 0, 240, -33, 1
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> (2*n)!*(-1/2)^(n-k)/(2*k)!*(n-k)!:
    seq(seq(T(n,k), k=0..n), n=0..8); # Peter Luschny, Jul 20 2019
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 9;
    R = RiordanArray[1/Sqrt[1 + 2 #]&, #/(1 + 2 #)&, rows, True];
    R // Flatten (* Jean-François Alcover, Jul 20 2019 *)
    T[ n_, k_] := Coefficient[ HermiteH[2 n, x/Sqrt[2]], x, 2 k]/2^n; (* Michael Somos, Jan 15 2020 *)
    T[ n_, k_] := Coefficient[ Nest[# x - D[#, x]&, 1, 2 n], x, 2 k]; (* Michael Somos, Jan 15 2020 *)
  • PARI
    {T(n, k) = my(t=1); for(i=1, 2*n, t = x*t - t'); polcoeff(t, 2*k)}; /* Michael Somos, Jan 15 2020 */

Formula

Number triangle T(n,k) = (-1)^(n-k)*(2n)!/((2k)!(n-k)!2^(n-k)).
He_(2*n)(x) = Sum_{k=0..n} T(n, k)*x^(2*k) where He is Hermite's polynomial. - Michael Somos, Jan 15 2020