A176270 Triangle T(n,m) = 1 + m*(m-n) read by rows, 0 <= m <= n.
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -3, -2, 1, 1, -3, -5, -5, -3, 1, 1, -4, -7, -8, -7, -4, 1, 1, -5, -9, -11, -11, -9, -5, 1, 1, -6, -11, -14, -15, -14, -11, -6, 1, 1, -7, -13, -17, -19, -19, -17, -13, -7, 1, 1, -8, -15, -20, -23, -24, -23, -20, -15, -8, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 0, 1; 1, -1, -1, 1; 1, -2, -3, -2, 1; 1, -3, -5, -5, -3, 1; 1, -4, -7, -8, -7, -4, 1; 1, -5, -9, -11, -11, -9, -5, 1; 1, -6, -11, -14, -15, -14, -11, -6, 1; 1, -7, -13, -17, -19, -19, -17, -13, -7, 1; 1, -8, -15, -20, -23, -24, -23, -20, -15, -8, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> k*(k-n)+1 ))); # G. C. Greubel, May 30 2019
-
Magma
[[k*(k-n)+1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 30 2019
-
Maple
A176270 := proc(n,m) 1+m*(m-n) ; end proc: # R. J. Mathar, May 03 2013
-
Mathematica
Table[k*(k-n)+1, {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 30 2019 *)
-
PARI
{T(n,k) = k*(k-n)+1}; \\ G. C. Greubel, May 30 2019
-
Sage
[[k*(k-n)+1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 30 2019
Formula
T(n,m) = binomial(n-m+1,2) + binomial(m+1,2) - binomial(n+1,2) + 1 = m^2 - n*m + 1.
T(n,m) = T(n,n-m).
T(n,m) = 2 - A077028(n,m) for 0 <= m <= n. - Werner Schulte, Nov 10 2020
Extensions
Edited by R. J. Mathar, May 03 2013
Comments