cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176281 Hankel transform of A176280.

Original entry on oeis.org

1, 3, 12, 56, 280, 1440, 7488, 39104, 204544, 1070592, 5604864, 29345792, 153653248, 804532224, 4212572160, 22057287680, 115493404672, 604731211776, 3166413520896, 16579556016128, 86811681488896, 454551863820288
Offset: 0

Views

Author

Paul Barry, Apr 14 2010

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(n-1)*(Fibonacci(2*n+1) + 1)); # G. C. Greubel, Nov 24 2019
  • Magma
    [2^(n-1)*(Fibonacci(2*n+1) + 1): n in [0..30]]; // G. C. Greubel, Nov 24 2019
    
  • Maple
    with(combinat); seq(2^(n-1)*(fibonacci(2*n+1) + 1), n=0..30); # G. C. Greubel, Nov 24 2019
  • Mathematica
    CoefficientList[Series[(1-5x+4x^2)/((1-2x)(1-6x+4x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{8,-16,8},{1,3,12},40] (* Harvey P. Dale, Aug 14 2013 *)
  • PARI
    vector(31, n, 2^(n-2)*(fibonacci(2*n-1) + 1)) \\ G. C. Greubel, Nov 24 2019
    
  • Sage
    [2^(n-1)*(fibonacci(2*n+1) + 1) for n in (0..30)] # G. C. Greubel, Nov 24 2019
    

Formula

G.f.: (1-5*x+4*x^2)/(1-8*x+16*x^2-8*x^3) = (1-5*x+4*x^2)/((1-2*x)*(1-6*x+4*x^2)).
a(n) = 2^(n-1) + (3-sqrt(5))^n*((5-sqrt(5))/20) + (3+sqrt(5))^n*((5+sqrt(5))/20).
a(n) = 2^(n-1) + A082761(n)/2. - R. J. Mathar, Sep 30 2012
a(0)=1, a(1)=3, a(2)=12, a(n) = 8*a(n-1) - 16*a(n-2) + 8*a(n-3). - Harvey P. Dale, Aug 14 2013
a(n) = 2^(n-1)*(Fibonacci(2*n+1) + 1). - G. C. Greubel, Nov 24 2019