cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176287 Diagonal sums of number triangle A092392.

Original entry on oeis.org

1, 2, 7, 23, 81, 291, 1066, 3955, 14818, 55937, 212428, 810664, 3106167, 11942261, 46047897, 178000950, 689580319, 2676598447, 10406929687, 40525045518, 158022343991, 616950024334, 2411395005316, 9434753907065, 36948692202031
Offset: 0

Views

Author

Paul Barry, Apr 14 2010

Keywords

Comments

Hankel transform is A176288.

Crossrefs

Programs

  • GAP
    List([0..25], n-> Sum([0..Int(n/2)], k-> Binomial(2*n-3*k, n-k) )); # G. C. Greubel, Nov 25 2019
  • Magma
    [ &+[Binomial(2*n-3*k, n-k): k in [0..Floor(n/2)]] : n in [0..25]]; // G. C. Greubel, Nov 25 2019
    
  • Maple
    seq( add(binomial(2*n-3*k, n-k), k=0..floor(n/2)) , n=0..25); # G. C. Greubel, Nov 25 2019
  • Mathematica
    CoefficientList[Series[2/(Sqrt[1-4*x]*(2-x+x*Sqrt[1-4*x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
    a[n_]:= Sum[Binomial[2*n-3*k, n-k], {k, 0, Floor[n/2]}]; Table[a[n], {n,0,25}] (* G. C. Greubel, Oct 19 2016 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n-3*k, n-k)); \\ Michel Marcus, Oct 20 2016
    
  • Sage
    [sum(binomial(2*n-3*k, n-k) for k in (0..floor(n/2))) for n in (0..25)] # G. C. Greubel, Nov 25 2019
    

Formula

G.f.: 1/(sqrt(1-4*x)*(1-x^2*c(x))) = 2/(sqrt(1-4*x)*(2-x+x*sqrt(1-4*x))), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/2)} C(2n-3k,n-k).
a(n) = Sum_{k=0..n} A000984(k)*A132364(n-k).
D-finite with recurrence: 2*n*a(n) +(6-11*n)*a(n-1) +(13*n-16)*a(n-2) +2*(5-n)*a(n-3) +3*(2-3*n)*a(n-4) +2*(2*n-5)*a(n-5)=0. - R. J. Mathar, Nov 15 2012 [Verified with Maple's FindRE and MinimalRecurrence functions, Georg Fischer, Nov 03 2022]
a(n) ~ 2^(2*n+3) / (7*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 04 2014