cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176291 A symmetrical triangle based on Narayana numbers and Eulerian numbers of type B: T(n, k) = 2 + A060187(n, k) - 2*binomial(n, k)*binomial(n+1, k)/(k+1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 13, 13, 1, 1, 58, 192, 58, 1, 1, 209, 1584, 1584, 209, 1, 1, 682, 10335, 23200, 10335, 682, 1, 1, 2125, 60267, 258745, 258745, 60267, 2125, 1, 1, 6482, 330942, 2482938, 4671488, 2482938, 330942, 6482, 1, 1, 19585, 1755262, 21702934, 69402712, 69402712, 21702934, 1755262, 19585, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2010

Keywords

Comments

Row sums are: {1, 2, 4, 28, 310, 3588, 45236, 642276, 10312214, 185760988, 3715773650, ...}.

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    2,      1;
  1,   13,     13,       1;
  1,   58,    192,      58,       1;
  1,  209,   1584,    1584,     209,       1;
  1,  682,  10335,   23200,   10335,     682,      1;
  1, 2125,  60267,  258745,  258745,   60267,   2125,    1;
  1, 6482, 330942, 2482938, 4671488, 2482938, 330942, 6482, 1;
		

Crossrefs

Programs

  • GAP
    B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> 2*(1 - B(n,k)*B(n+1,k)/(k+1)) + Sum([0..k], j-> (-1)^j*B(n+1,j)*(2*(k-j)+1)^n) ))); # G. C. Greubel, Nov 23 2019
  • Magma
    B:=Binomial; [2*(1 - B(n,k)*B(n+1,k)/(k+1)) + (&+[(-1)^j*B(n+1,j) *(2*(k-j)+1)^n: j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 23 2019
    
  • Maple
    b:= binomial; T:= 2 + sum((-1)^j*b(n+1,j)*(2*(k-j)+1)^n, j=0..k) - 2*b(n, k)*b(n+1, k)/(k+1); seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10); # G. C. Greubel, Nov 23 2019
  • Mathematica
    (* First program *)
    p[x_, n_]= (1 - x)^(n+1)*Sum[(2*k+1)^n*x^k, {k, 0, Infinity}];(*A060187*)
    f[n_, m_]:= CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m+1]];
    T[n_, m_]:= 2 -(-f[n, m] +2*Binomial[n, m]*Binomial[n+1, m]/(m+1));
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
    (* Second program *)
    B:=Binomial; T[n_,k_]:= T[n,k]= 2 +Sum[(-1)^j*B[n+1,j]*(2*(k-j)+1)^n, {j, 0,k}] -2*B[n,k]*B[n+1,k]/(k+1); Table[T[n,k], {n,0,10}, {k,0,n} ]//Flatten (* G. C. Greubel, Nov 23 2019 *)
  • PARI
    T(n,k) = b=binomial; 2 + sum(j=0,k, (-1)^j*b(n+1,j)*(2*(k-j)+1)^n) - 2*b(n, k)*b(n+1, k)/(k+1); \\ G. C. Greubel, Nov 23 2019
    
  • Sage
    b=binomial; [[2 + sum( (-1)^j*b(n+1,j)*(2*(k-j)+1)^n for j in (0..k)) - 2*b(n, k)*b(n+1, k)/(k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 23 2019
    

Formula

T(n, k) = 2 + A060187(n, k) - 2*binomial(n, k)*binomial(n+1, k)/(k+1), where A060187(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)* (2*j+1)^n.

Extensions

Edited by G. C. Greubel, Nov 23 2019