A176306 Triangle T(n,k) = 1 - A176304(k) - A176304(n-k) + A176304(n), read by rows.
1, 1, 1, 1, 0, 1, 1, 13, 13, 1, 1, 25, 38, 25, 1, 1, -185, -160, -160, -185, 1, 1, -779, -964, -952, -964, -779, 1, 1, 7497, 6718, 6520, 6520, 6718, 7497, 1, 1, 45907, 53404, 52612, 52402, 52612, 53404, 45907, 1, 1, -524629, -478722, -471238, -472042, -472042, -471238, -478722, -524629, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 0, 1; 1, 13, 13, 1; 1, 25, 38, 25, 1; 1, -185, -160, -160, -185, 1; 1, -779, -964, -952, -964, -779, 1; 1, 7497, 6718, 6520, 6520, 6718, 7497, 1; 1, 45907, 53404, 52612, 52402, 52612, 53404, 45907, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
function b(n) if n eq 0 then return 0; else return (-1)^n*n*b(n-1) -1; end if; return b; end function; [1+b(n)-b(k)-b(n-k): k in [0..n], n in [1..10]]; // G. C. Greubel, Nov 26 2019
-
Maple
A176304 := proc(n) if n = 0 then 0; else (-1)^n*n*procname(n-1)-1 ; end if; end proc: A176306 := proc(n,m) 1-A176304(m)-A176304(n-m)+A176304(n) ; end proc: # R. J. Mathar, May 04 2013
-
Mathematica
b[n_]:= b[n] = If[n==0, 0, (-1)^n*n*b[n-1] -1]; T[n_, k_]:= T[n, k] = 1 - (b[k] +b[n-k] -b[n]); Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
PARI
b(n) = if(n==0, 0, (-1)^n*n*b(n-1) -1); T(n,k) = 1 + b(n) - b(k) - b(n-k); \\ G. C. Greubel, Nov 26 2019
-
Sage
@CachedFunction def b(n): if (n==0): return 0 else: return (-1)^n*n*b(n-1) -1 [[1+b(n)-b(k)-b(n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
Formula
T(n,k) = T(n,n-k).
Comments