A176307 Triangle T(n,k) = 1 + A176304(k) + A176304(n-k) - A176304(n), read by rows.
1, 1, 1, 1, 2, 1, 1, -11, -11, 1, 1, -23, -36, -23, 1, 1, 187, 162, 162, 187, 1, 1, 781, 966, 954, 966, 781, 1, 1, -7495, -6716, -6518, -6518, -6716, -7495, 1, 1, -45905, -53402, -52610, -52400, -52610, -53402, -45905, 1, 1, 524631, 478724, 471240, 472044, 472044, 471240, 478724, 524631, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 2, 1; 1, -11, -11, 1; 1, -23, -36, -23, 1; 1, 187, 162, 162, 187, 1; 1, 781, 966, 954, 966, 781, 1; 1, -7495, -6716, -6518, -6518, -6716, -7495, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
function b(n) if n eq 0 then return 0; else return (-1)^n*n*b(n-1) -1; end if; return b; end function; [1-b(n)+b(k)+b(n-k): k in [0..n], n in [1..10]]; // G. C. Greubel, Nov 26 2019
-
Maple
A176304 := proc(n) if n = 0 then 0; else (-1)^n*n*procname(n-1)-1 ; end if; end proc: A176307 := proc(n,m) 1+A176304(m)+A176304(n-m)-A176304(n) ; end proc: # R. J. Mathar, May 04 2013
-
Mathematica
b[n_]:= b[n]= If[n==0, 0, (-1)^n*n*b[n-1] -1]; T[n_, k_]:= T[n, k] = 1 + b[k] + b[n-k] - b[n]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
PARI
b(n) = if(n==0, 0, (-1)^n*n*b(n-1) -1); T(n,k) = 1 - b(n) + b(k) + b(n-k); \\ G. C. Greubel, Nov 26 2019
-
Sage
@CachedFunction def b(n): if (n==0): return 0 else: return (-1)^n*n*b(n-1) -1 [[1-b(n)+b(k)+b(n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
Formula
T(n,k) = T(n,n-k) = 2 - A176306(n,k).
Comments