cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176331 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, n-k) * C(j, k) * (-1)^(n - j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 28, 13, 1, 1, 21, 79, 79, 21, 1, 1, 31, 181, 315, 181, 31, 1, 1, 43, 361, 971, 971, 361, 43, 1, 1, 57, 652, 2511, 3876, 2511, 652, 57, 1, 1, 73, 1093, 5713, 12606, 12606, 5713, 1093, 73, 1, 1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1
Offset: 0

Views

Author

Paul Barry, Apr 15 2010

Keywords

Examples

			Triangle begins
  1;
  1,  1;
  1,  3,    1;
  1,  7,    7,     1;
  1, 13,   28,    13,     1;
  1, 21,   79,    79,    21,     1;
  1, 31,  181,   315,   181,    31,     1;
  1, 43,  361,   971,   971,   361,    43,     1;
  1, 57,  652,  2511,  3876,  2511,   652,    57,    1;
  1, 73, 1093,  5713, 12606, 12606,  5713,  1093,   73,  1;
  1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1;
		

Crossrefs

Row sums are A176332.
Diagonal sums are A176334.
Central coefficients T(2*n, n) are A176335.

Programs

  • GAP
    T:= function(n,k)
        return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
      end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 07 2019
  • Magma
    T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    T:= proc(n, k) option remember; add( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k), j=0..n); end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 07 2019
    T := (n, k) -> binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], -1):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9); # Peter Luschny, May 13 2024
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 07 2019 *)
  • PARI
    T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k)); \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 07 2019
    

Formula

T(n, k) = T(n, n-k).
T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], -1). - Peter Luschny, May 13 2024