A176337 a(n) = 1 + (1-2^n)*a(n-1) for n > 0, a(0)=0.
0, 1, -2, 15, -224, 6945, -437534, 55566819, -14169538844, 7240634349285, -7407168939318554, 15162474818785080039, -62090334382924902759704, 508581928930537878504735465, -8332097741669002063543081123094
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..80
Crossrefs
Cf. A176338.
Programs
-
GAP
a:= function(n,q) if n=0 then return 0; else return 1 - (q^n-1)*a(n-1,q); fi; end; List([0..15], n-> a(n,2) ); # G. C. Greubel, Dec 07 2019
-
Magma
function a(n,q) if n eq 0 then return 0; else return 1 - (q^n-1)*a(n-1,q); end if; return a; end function; [a(n,2): n in [0..15]]; // G. C. Greubel, Dec 07 2019
-
Maple
A176337 := proc(n) if n = 0 then 0; else 1+(1-2^n)*procname(n-1) ; end if; end proc: # R. J. Mathar, May 04 2013
-
Mathematica
a[n_, q_]:= a[n, q]= If[n==0, 0, (1-q^n)*a[n-1, q] +1]; Table[a[n, 2], {n,0,15}]
-
PARI
q=2; a(n,q) = if(n==0, 0, 1 -(q^n-1)*a(n-1,q) ); vector(15, n, a(n-1, 2)) \\ G. C. Greubel, Dec 07 2019
-
Sage
def a(n, q): if (n==0): return 0 else: return 1 - (q^n-1)*a(n-1,q) [a(n,2) for n in (0..15)] # G. C. Greubel, Dec 07 2019