A176339 Triangle T(n,k) = 1 - A176337(k) - A176337(n-k) + A176337(n) read by rows.
1, 1, 1, 1, -3, 1, 1, 17, 17, 1, 1, -239, -219, -239, 1, 1, 7169, 6933, 6933, 7169, 1, 1, -444479, -437307, -437563, -437307, -444479, 1, 1, 56004353, 55559877, 55567029, 55567029, 55559877, 56004353, 1, 1, -14225105663, -14169101307, -14169545803, -14169538395, -14169545803, -14169101307, -14225105663, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, -3, 1; 1, 17, 17, 1; 1, -239, -219, -239, 1; 1, 7169, 6933, 6933, 7169, 1; 1, -444479, -437307, -437563, -437307, -444479, 1;
Links
- G. C. Greubel, Rows n = 0..25 of triangle, flattened
Programs
-
GAP
b:= function(n,q) if n=0 then return 0; else return 1 - (q^n-1)*b(n-1,q); fi; end; T:= function(n,k,q) return 1 + b(n,q) - b(n-k,q) - b(k,q); end; Flat(List([0..10], n-> List([0..n], k-> T(n,k,2) ))); # G. C. Greubel, Dec 07 2019
-
Magma
function b(n,q) if n eq 0 then return 0; else return 1 - (q^n-1)*b(n-1,q); end if; return b; end function; function T(n,k,q) return 1 + b(n,q) - b(n-k,q) - b(k,q); end function; [ T(n,k,2) : k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 07 2019
-
Maple
A176339 := proc(n,m) 1-A176337(m)-A176337(n-m)+A176337(n) ; end proc: # R. J. Mathar, May 04 2013
-
Mathematica
b[n_, q_]:= b[n, q]= If[n==0, 0, (1-q^n)*b[n-1, q] +1]; T[n_,k_,q_]:= 1 + b[n,q] -b[n-k,q] - b[k,q]; Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Dec 07 2019 *)
-
PARI
b(n,q) = if(n==0, 0, 1 + (1-q^n)*b(n-1,q) ); T(n,k,q) = 1 + b(n,q) - b(n-k,q) - b(k,q); for(n=0,10, for(k=0,n, print1(T(n,k,2), ", "))) \\ G. C. Greubel, Dec 07 2019
-
Sage
@CachedFunction def b(n, q): if (n==0): return 0 else: return 1 - (q^n-1)*b(n-1,q) def T(n,k,q): return 1 + b(n,q) - b(n-k,q) - b(k,q) [[T(n,k,2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 07 2019
Formula
T(n,k) = T(n,n-k).
Comments