cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176366 Denominator of (1/Pi)*Integral_{0..infinity} (sin x / x)^(2*n) dx.

Original entry on oeis.org

2, 3, 40, 630, 72576, 3326400, 148262400, 13621608000, 75277762560, 243290200817664, 2322315553259520000, 538583682060103680000, 85226428809510912000000, 27777728189842735104000000, 147362699895661699242393600000, 4282728465717668134232064000000
Offset: 1

Views

Author

Jonathan Vos Post, Apr 16 2010

Keywords

Comments

The numerators are given in A176365.
Bisection of A049331. See it for further references.

Examples

			a(2) = 3 because Integral_{0..infinity} (sin(x)/x)^4 dx = (1/3)*Pi.
a(3) = 40 because Integral_{0..infinity} (sin(x)/x)^6 dx = (11/40)*Pi.
a(4) = 630 because Integral_{0..infinity} (sin(x)/x)^8 dx = (151/630)*Pi.
a(5) = 72576 because Integral_{0..infinity} (sin(x)/x)^10 dx = (15619/72576)*Pi.
		

Crossrefs

Cf. A176365.

Programs

  • Mathematica
    a[n_]:= (1/Pi)*Integrate[(Sin[x]/x)^(2n), {x, 0, Infinity}]//Denominator;
    Array[a, 16] (* Jean-François Alcover, Nov 25 2017 *)

Formula

a(n) = A049331(2*n).

Extensions

Edited and extended by Max Alekseyev, May 07 2010