cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176409 Multiples of 3 or 7.

Original entry on oeis.org

0, 3, 6, 7, 9, 12, 14, 15, 18, 21, 24, 27, 28, 30, 33, 35, 36, 39, 42, 45, 48, 49, 51, 54, 56, 57, 60, 63, 66, 69, 70, 72, 75, 77, 78, 81, 84, 87, 90, 91, 93, 96, 98, 99, 102, 105, 108, 111, 112, 114, 117, 119, 120, 123, 126, 129, 132, 133, 135, 138, 140, 141, 144, 147, 150, 153
Offset: 1

Views

Author

Zak Seidov, Dec 07 2010

Keywords

Comments

Therefore, this sequence also includes multiples of 21.
First differences: 3, 3, 1, 2, 3, 2, 1, 3, 3, 3, 3, 1, 2, 3, 2, 1, 3, 3, 3, 3, 1, 2, 3, 2, 1, 3, 3, 3, 3, 1, 2, 3, 2, 1, 3, 3, 3 have period {3, 3, 1, 2, 3, 2, 1, 3, 3}.
In general, sequences of numbers divisible by primes p and q will be of the form a(n+p+q-1) = a(n)+p*q. - Gary Detlefs, Oct 07 2013

Crossrefs

Programs

  • Mathematica
    Union@Flatten@{Table[3n, {n, 70}], Table[7n, {n, 30}]}
    Select[ Range@ 153, Mod[#, 3] == 0 || Mod[#, 7] == 0 &]
  • PARI
    concat(0, Vec(x^2*(3 + 3*x + x^2 + 2*x^3 + 3*x^4 + 2*x^5 + x^6 + 3*x^7 + 3*x^8) / ((1 - x)^2*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^70))) \\ Colin Barker, Mar 21 2020

Formula

a(n+9) = a(n) + 21.
a(n) = 21*floor((n-1)/9) + 2*((n-1) mod 9) + s(((n-1) mod 9)-1) + 1 - floor(((n-2) mod 9)/8), where s(n) = floor(n*sqrt(2)) - 2*floor(n/sqrt(2)). - Gary Detlefs, Oct 07 2013
a(n) = 7n/3 + O(1). - Charles R Greathouse IV, Feb 13 2017
From Colin Barker, Mar 21 2020: (Start)
G.f.: x^2*(3 + 3*x + x^2 + 2*x^3 + 3*x^4 + 2*x^5 + x^6 + 3*x^7 + 3*x^8) / ((1 - x)^2*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = a(n-1) + a(n-9) - a(n-10) for n>10.
(End)

Extensions

0 inserted by Daniel Starodubtsev, Mar 21 2020