cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A176411 A symmetrical triangle of leading ones adjusted polynomial coefficients based on Hermite orthogonal polynomials: t(n,m)=CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, -19, -19, 1, 1, -27, -123, -27, 1, 1, 89, -191, -191, 89, 1, 1, 57, 297, 57, 297, 57, 1, 1, -1807, -1471, 3233, 3233, -1471, -1807, 1, 1, -1935, -18959, -1935, 24945, -1935, -18959, -1935, 1, 1, 29729, -9727, -81151, 47873, 47873, -81151
Offset: 0

Views

Author

Roger L. Bagula, Apr 16 2010

Keywords

Comments

Row sums are:
{1, 2, 1, -36, -175, -202, 767, -88, -20711, -26550, 337835,...}.
Sequence A176410 was discovered by a typing mistake;
I left out the plus signs and Mathematica made it multiplication instead.

Examples

			{1},
{1, 1},
{1, -1, 1},
{1, -19, -19, 1},
{1, -27, -123, -27, 1},
{1, 89, -191, -191, 89, 1},
{1, 57, 297, 57, 297, 57, 1},
{1, -1807, -1471, 3233, 3233, -1471, -1807, 1},
{1, -1935, -18959, -1935, 24945, -1935, -18959, -1935, 1},
{1, 29729, -9727, -81151, 47873, 47873, -81151, -9727, 29729, 1},
{1, 29217, 308577, 29217, -212703, 29217, -212703, 29217, 308577, 29217, 1}
		

Programs

  • Mathematica
    t[n_, m_] := CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1;
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

t(n,m)=CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1
Showing 1-1 of 1 results.