A176467 A symmetrical triangle:q=2;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1.
1, 1, 1, 1, 4, 1, 1, 17, 17, 1, 1, 62, 196, 62, 1, 1, 207, 1528, 1528, 207, 1, 1, 660, 9893, 22154, 9893, 660, 1, 1, 2053, 57991, 247913, 247913, 57991, 2053, 1, 1, 6298, 320818, 2388134, 4474228, 2388134, 320818, 6298, 1, 1, 19163, 1712906, 20919938
Offset: 0
Examples
{1}, {1, 1}, {1, 4, 1}, {1, 17, 17, 1}, {1, 62, 196, 62, 1}, {1, 207, 1528, 1528, 207, 1}, {1, 660, 9893, 22154, 9893, 660, 1}, {1, 2053, 57991, 247913, 247913, 57991, 2053, 1}, {1, 6298, 320818, 2388134, 4474228, 2388134, 320818, 6298, 1}, {1, 19163, 1712906, 20919938, 66103548, 66103548, 20919938, 1712906, 19163, 1}, {1, 58016, 8941891, 171953190, 853179296, 1417870818, 853179296, 171953190, 8941891, 58016, 1}
Crossrefs
Cf. A060187
Programs
-
Mathematica
(*A060187*); p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}]; f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]]; c[n_, q_] = Product[1 - q^i, {i, 1, n}]; t[n_, m_, q_] := f[n, m] - c[n, q]/(c[m, q]*c[n - m, q]) + 1; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
Comments